메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 291-300

A bayesian approach to graph regression with relevant subgraph selection

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACHES; BINARY VECTORS; COLUMN GENERATION; DATA SETS; DUAL PROBLEM; GAUSSIANS; GRAPH DATA; HIGH-DIMENSIONAL; LINEAR REGRESSION MODELS; MATHEMATICAL PROGRAMMING PROBLEM; MODEL PERFORMANCE; MOLECULAR GRAPHS; OBJECTIVE FUNCTIONS; POINT ESTIMATE; POSTERIOR DISTRIBUTIONS; PRIOR DISTRIBUTION; REAL-WORLD APPLICATION; REGRESSION ALGORITHMS; REGRESSION PARAMETERS; SMALL DATA SET; SUBGRAPH MINING; SUBGRAPHS; TYPE METHODS;

EID: 72849150202     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (17)
  • 1
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
    • C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44:1402-1411, 2004.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    Raedt, L.D.4
  • 2
    • 33646238004 scopus 로고    scopus 로고
    • J. Kazius, S. Nijssen, J. Kok, and T. Back A.P. Ijzerman. Substructure mining using elaborate chemical representation. J. Chem. Inf. Model, 46:597-605, 2006.
    • J. Kazius, S. Nijssen, J. Kok, and T. Back A.P. Ijzerman. Substructure mining using elaborate chemical representation. J. Chem. Inf. Model, 46:597-605, 2006.
  • 4
    • 78149333073 scopus 로고    scopus 로고
    • X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining, pages 721-724. IEEE Computer Society, 2002.
    • X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining, pages 721-724. IEEE Computer Society, 2002.
  • 7
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshrani. Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc B., 58(1):267-288, 1996.
    • (1996) J. Royal. Statist. Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshrani, R.1
  • 11
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3):225-254, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 12
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • G. Ratsch, A. Demiriz, and K.P. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48(1-3):189-218, 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 189-218
    • Ratsch, G.1    Demiriz, A.2    Bennett, K.P.3
  • 13
    • 72849130119 scopus 로고    scopus 로고
    • Gboost: A mathematical programming approach to graph classification and regression
    • H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. Gboost: A mathematical programming approach to graph classification and regression. Machine Learning, 2008.
    • (2008) Machine Learning
    • Saigo, H.1    Nowozin, S.2    Kadowaki, T.3    Kudo, T.4    Tsuda, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.