-
1
-
-
0030283418
-
From statistical knowledge bases to degrees of belief
-
F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of belief. Artif. Intell., 87(1-2):75-143, 1996.
-
(1996)
Artif. Intell.
, vol.87
, Issue.1-2
, pp. 75-143
-
-
Bacchus, F.1
Grove, A.J.2
Halpern, J.Y.3
Koller, D.4
-
2
-
-
84944062566
-
Towards sensor database systems
-
P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Lecture Notes In Computer Science, volume 1987, pages 3-14, 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.1987
, pp. 3-14
-
-
Bonnet, P.1
Gehrke, J.2
Seshadri, P.3
-
3
-
-
33749644725
-
Approximate data collection in sensor networks using probabilistic models
-
D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate data collection in sensor networks using probabilistic models. In 22nd International Conference on Data Engineering (ICDE), pages 48-60, 2006.
-
(2006)
22nd International Conference on Data Engineering (ICDE)
, pp. 48-60
-
-
Chu, D.1
Deshpande, A.2
Hellerstein, J.M.3
Hong, W.4
-
5
-
-
79959895729
-
The design and implementation of a declarative sensor network system
-
D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Stoica. The design and implementation of a declarative sensor network system. In 5th ACM Conference on Embedded networked Sensor Systems (SenSys), pages 175-188, 2007.
-
(2007)
5th ACM Conference on Embedded Networked Sensor Systems (SenSys)
, pp. 175-188
-
-
Chu, D.1
Popa, L.2
Tavakoli, A.3
Hellerstein, J.M.4
Levis, P.5
Shenker, S.6
Stoica, I.7
-
7
-
-
84858514050
-
-
D. Culler et al. TinyOS. http://www.tinyos.net, 2004.
-
(2004)
TinyOS
-
-
Culler, D.1
-
9
-
-
0035451897
-
Parameter estimation in stochastic logic programs
-
J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001.
-
(2001)
Machine Learning
, vol.44
, Issue.3
, pp. 245-271
-
-
Cussens, J.1
-
11
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Royal Statistical Society, 39(1):1-38, 1977.
-
(1977)
Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
12
-
-
84880688943
-
Learning probabilistic relational models
-
N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 1300-1309, 1999.
-
(1999)
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1300-1309
-
-
Friedman, N.1
Getoor, L.2
Koller, D.3
Pfeffer, A.4
-
13
-
-
0037702249
-
The nesC language: A holistic approach to networked embedded systems
-
D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language: A holistic approach to networked embedded systems. In Programming Language Design and Implementation (PLDI), pages 1-11, 2003.
-
(2003)
Programming Language Design and Implementation (PLDI)
, pp. 1-11
-
-
Gay, D.1
Levis, P.2
Von Behren, R.3
Welsh, M.4
Brewer, E.5
Culler, D.6
-
14
-
-
0141496151
-
Learning probabilistic models of link structure
-
L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link structure. J. Mach. Learn. Res., 3:679-707, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 679-707
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Taskar, B.4
-
16
-
-
0025535649
-
An analysis of first-order logics of probability
-
J. Y. Halpern. An analysis of first-order logics of probability. Artif. Intell., 46(3):311-350, 1990.
-
(1990)
Artif. Intell.
, vol.46
, Issue.3
, pp. 311-350
-
-
Halpern, J.Y.1
-
17
-
-
35248832819
-
Efficient EM learning with tabulation for parameterized logic programs
-
Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs. Computational Logic, pages 269-284, 2000.
-
(2000)
Computational Logic
, pp. 269-284
-
-
Kameya, Y.1
Sato, T.2
-
18
-
-
84969383177
-
A graphical method for parameter learning of symbolic-statistical models
-
Y. Kameya, N. Ueda, and T. Sato. A graphical method for parameter learning of symbolic-statistical models. In Discovery Science, pages 264-276, 1999.
-
(1999)
Discovery Science
, pp. 264-276
-
-
Kameya, Y.1
Ueda, N.2
Sato, T.3
-
21
-
-
18844399081
-
TOSSIM: Accurate and scalable simulation of entire tinyOS applications
-
P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable simulation of entire tinyOS applications. In 1st international conference on Embedded networked sensor systems (SenSys), pages 126-137, 2003.
-
(2003)
1st International Conference on Embedded Networked Sensor Systems (SenSys)
, pp. 126-137
-
-
Levis, P.1
Lee, N.2
Welsh, M.3
Culler, D.4
-
22
-
-
33845402986
-
Implementing declarative overlays
-
B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing declarative overlays. SIGOPS Oper. Syst. Rev., 39(5):75-90, 2005.
-
(2005)
SIGOPS Oper. Syst. Rev.
, vol.39
, Issue.5
, pp. 75-90
-
-
Loo, B.T.1
Condie, T.2
Hellerstein, J.M.3
Maniatis, P.4
Roscoe, T.5
Stoica, I.6
-
23
-
-
33847318874
-
Declarative routing: Extensible routing with declarative queries
-
B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing: extensible routing with declarative queries. In SIGCOMM, pages 289-300, 2005.
-
(2005)
SIGCOMM
, pp. 289-300
-
-
Loo, B.T.1
Hellerstein, J.M.2
Stoica, I.3
Ramakrishnan, R.4
-
25
-
-
84880739933
-
BLOG: Probabilistic models with unknown objects
-
B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG: probabilistic models with unknown objects. In IJCAI, pages 1352-1359, 2005.
-
(2005)
IJCAI
, pp. 1352-1359
-
-
Milch, B.1
Marthi, B.2
Russell, S.J.3
Sontag, D.4
Ong, D.L.5
Kolobov, A.6
-
29
-
-
0022659563
-
Probabilistic logic
-
N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71-88, 1986.
-
(1986)
Artificial Intelligence
, vol.28
, Issue.1
, pp. 71-88
-
-
Nilsson, N.J.1
-
31
-
-
84880881676
-
IBAL: A probabilistic rational programming language
-
A. Pfeffer. IBAL: A probabilistic rational programming language. In IJCAI, pages 733-740, 2001.
-
(2001)
IJCAI
, pp. 733-740
-
-
Pfeffer, A.1
-
33
-
-
0027702434
-
Probabilistic horn abduction and bayesian networks
-
D. Poole. Probabilistic horn abduction and bayesian networks. Artificial Intelligence, 64:81-29, 1993.
-
(1993)
Artificial Intelligence
, vol.64
, pp. 81-129
-
-
Poole, D.1
-
34
-
-
0000800741
-
A tutorial on hidden markov models and selected applications in speech recognition
-
Morgan Kaufmann
-
L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In Readings in speech recognition, pages 267-296. Morgan Kaufmann, 1990.
-
(1990)
Readings in Speech Recognition
, pp. 267-296
-
-
Rabiner, L.R.1
-
35
-
-
32044466073
-
Markov logic networks
-
M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1-2):107-136, 2006.
-
(2006)
Mach. Learn.
, vol.62
, Issue.1-2
, pp. 107-136
-
-
Richardson, M.1
Domingos, P.2
-
37
-
-
35348824883
-
Robust message-passing for statistical inference in sensor networks
-
USA
-
J. Schiff, D. Antonelli, A. G. Dimakis, D. Chu, and M. J. Wainwright. Robust message-passing for statistical inference in sensor networks. In 6th international conference on Information processing in sensor networks (IPSN), pages 109-118, USA, 2007.
-
(2007)
6th International Conference on Information Processing in Sensor Networks (IPSN)
, pp. 109-118
-
-
Schiff, J.1
Antonelli, D.2
Dimakis, A.G.3
Chu, D.4
Wainwright, M.J.5
-
38
-
-
26644435250
-
Simulating the power consumption of large-scale sensor network applications
-
V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh. Simulating the power consumption of large-scale sensor network applications. In 2nd International Conference on Embedded networked sensor systems (SenSys), pages 188-200, 2004.
-
(2004)
2nd International Conference on Embedded Networked Sensor Systems (SenSys)
, pp. 188-200
-
-
Shnayder, V.1
Hempstead, M.2
Rong Chen, B.3
Allen, G.W.4
Welsh, M.5
-
39
-
-
85011015549
-
Suppression and failures in sensor networks: A bayesian approach
-
A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala, and J. Yang. Suppression and failures in sensor networks: a bayesian approach. In 33rd international conference on Very large data bases (VLDB), pages 842-853, 2007.
-
(2007)
33rd International Conference on Very Large Data Bases (VLDB)
, pp. 842-853
-
-
Silberstein, A.1
Puggioni, G.2
Gelfand, A.3
Munagala, K.4
Yang, J.5
-
42
-
-
4544313666
-
Hood: A neighborhood abstraction for sensor networks
-
K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood abstraction for sensor networks. In International Conference on Mobile Systems, Applications, and Services, pages 99-110, 2004.
-
(2004)
International Conference on Mobile Systems, Applications, and Services
, pp. 99-110
-
-
Whitehouse, K.1
Sharp, C.2
Brewer, E.3
Culler, D.4
|