메뉴 건너뛰기




Volumn , Issue , 2009, Pages 907-914

Classification and regression-based surrogate model-assisted interactive genetic algorithm with individual's fuzzy fitness

Author keywords

Fuzzy fitness; Interactive genetic algorithm; Optimization; Support vector machine; Surrogate model

Indexed keywords

EVOLUTIONARY DESIGN; FUZZY FITNESS; FUZZY UNCERTAINTIES; INTERACTIVE GENETIC ALGORITHM; OPTIMAL SOLUTIONS; POPULATION SIZES; SUPPORT VECTOR CLASSIFICATION; SUPPORT VECTOR REGRESSION MACHINES; SURROGATE MODEL; TRAINED SAMPLES; TRAINING DATA SETS; TRAINING SAMPLE;

EID: 72749122018     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1570025     Document Type: Conference Paper
Times cited : (22)

References (25)
  • 2
    • 72749128357 scopus 로고    scopus 로고
    • Caldwell, C. and Johnston,V. S. 1991 Tracking a criminal suspect through 'face-space' with a genetic algorithm. In Proceedings of the 4th International Conference on Genetic Algorithms (San Digeo, CV , USA, July 1991),GA'91,Belew R. K. and BookerL. B. eds., Morgan Kaufmann, 416-421.
    • Caldwell, C. and Johnston,V. S. 1991 Tracking a criminal suspect through 'face-space' with a genetic algorithm. In Proceedings of the 4th International Conference on Genetic Algorithms (San Digeo, CV , USA, July 1991),GA'91,Belew R. K. and BookerL. B. eds., Morgan Kaufmann, 416-421.
  • 3
    • 0034513447 scopus 로고    scopus 로고
    • Application of interactive genetic algorithm to fashion design
    • Jun
    • Kim, H. S. and Cho,S. B. 2000 Application of interactive genetic algorithm to fashion design. Engineering Applications of Artificial Intelligence, 13, 6(Jun. 2000), 635-644.
    • (2000) Engineering Applications of Artificial Intelligence , vol.13 , Issue.6 , pp. 635-644
    • Kim, H.S.1    Cho, S.B.2
  • 5
    • 34250219592 scopus 로고    scopus 로고
    • Interactive evolutionary computation-based hearing aid fitting
    • Jun
    • Takagi, H. and Ohsaki,M. 2007 Interactive evolutionary computation-based hearing aid fitting. IEEE Transactions on Evolutionary Computation, 11, 3(Jun. 2007), 414-427.
    • (2007) IEEE Transactions on Evolutionary Computation , vol.11 , Issue.3 , pp. 414-427
    • Takagi, H.1    Ohsaki, M.2
  • 6
    • 0000530063 scopus 로고    scopus 로고
    • Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation
    • Sep
    • Takagi,H. 2001 Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 89, 9(Sep. 2001), 1275-1296.
    • (2001) Proceedings of the IEEE , vol.89 , Issue.9 , pp. 1275-1296
    • Takagi, H.1
  • 9
    • 15744382923 scopus 로고    scopus 로고
    • Phase estimations of individual's fitness based on NN in interactive genetic algorithms
    • Feb
    • Zhou,Y. , Gong,D. W. and Hao, G. S. 2005 Phase estimations of individual's fitness based on NN in interactive genetic algorithms. Control and Decision, 20, 2, (Feb. 2005), 234-236.
    • (2005) Control and Decision , vol.20 , Issue.2 , pp. 234-236
    • Zhou, Y.1    Gong, D.W.2    Hao, G.S.3
  • 12
    • 33645643087 scopus 로고    scopus 로고
    • Method of replacing the user with machine in interactive genetic algorithm
    • Feb
    • Hao,G. S., Gong,D. W. and Shi, Y. Q. 2006 Method of replacing the user with machine in interactive genetic algorithm. Pattern Recognition and Artificial Intelligence. 19, 1(Feb.2006), 111-115.
    • (2006) Pattern Recognition and Artificial Intelligence , vol.19 , Issue.1 , pp. 111-115
    • Hao, G.S.1    Gong, D.W.2    Shi, Y.Q.3
  • 13
    • 72749123874 scopus 로고    scopus 로고
    • D. Gong and G. Guo, Interactive genetic algorithms with interval fitness of evolutionary individuals, Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Complex Systems and Applications-modeling, Control and Simulations.14, s2(Dec.2007), 446-450.
    • D. Gong and G. Guo, "Interactive genetic algorithms with interval fitness of evolutionary individuals," Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Complex Systems and Applications-modeling, Control and Simulations.14, s2(Dec.2007), 446-450.
  • 16
    • 72749127919 scopus 로고    scopus 로고
    • Vapnik.V. 1995 The Nature of Statistical Learning Theory. Springer, N.Y..
    • Vapnik.V. 1995 The Nature of Statistical Learning Theory. Springer, N.Y..
  • 17
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical report, Image speechandintelligent systems research group, University of Southampton, UK. Available on, Accessed 30 July
    • Gunn, S. R. (1998). Support vector machines for classification and regression. Technical report, Image speechandintelligent systems research group, University of Southampton, UK. Available on http://www.ecs.soton.ac.uk/srg/ publications/pdf/SVM.pdf. Accessed 30 July 2004.
    • (1998)
    • Gunn, S.R.1
  • 18
    • 33750051338 scopus 로고    scopus 로고
    • A decision support system based on support vector machines for diagnosis of the heart valve diseases
    • Jan
    • Comak, E., Arslan, A. and Turkoglu, I. 2007 A decision support system based on support vector machines for diagnosis of the heart valve diseases. Computers in Biology and Medicine, 37, 1, (Jan. 2007), 21-27.
    • (2007) Computers in Biology and Medicine , vol.37 , Issue.1 , pp. 21-27
    • Comak, E.1    Arslan, A.2    Turkoglu, I.3
  • 20
    • 56349116904 scopus 로고    scopus 로고
    • Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm - support vector machines: HGASVM
    • Engin A.. 2009 Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm - support vector machines: HGASVM. Expert Systems with Applications, 36 (2009) 1391-1402.
    • (2009) Expert Systems with Applications , vol.36 , pp. 1391-1402
    • Engin, A.1
  • 21
    • 72749111068 scopus 로고    scopus 로고
    • Koby Crammer,Yoram Singer. 2001 On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, (Dec. 2001), 265-292.
    • Koby Crammer,Yoram Singer. 2001 On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, (Dec. 2001), 265-292.
  • 22
    • 33749247281 scopus 로고    scopus 로고
    • Domain described support vector classifier for multi-classification problems
    • Jan
    • Daewon Lee, Jaewook Lee. 2007 Domain described support vector classifier for multi-classification problems, Pattern Recognition, 40, 1 (Jan. 2007) 41-51.
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 41-51
    • Lee, D.1    Lee, J.2
  • 23
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, and T. Petsche, editors MIT Press
    • Vapnik V., Golowich S. and Smola A. 1997 Support vector method for function approximation, regression estimation, and signal processing., Advances in Neural Information Processing Systems 9 (M. Mozer, M. Jordan, and T. Petsche, editors) MIT Press., 1997, 281-287.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.