메뉴 건너뛰기




Volumn 24, Issue 12, 2009, Pages

Adaptive evolutionary multi-objective particle swarm optimization algorithm

Author keywords

Crowding disntance; Dynamic aggregate method; Multi objective optimisation; Nondominated sorting; PSO

Indexed keywords

ADAPTIVE INERTIA; BENCHMARK TESTS; CROWDING DISNTANCE; MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION; MULTI-OBJECTIVE PROBLEM; MULTIOBJECTIVE OPTIMISATION; MUTATION OPERATIONS; NONDOMINATED SORTING; PARETO SOLUTION; SIMULATION RESULT;

EID: 72749103473     PISSN: 10010920     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (18)
  • 1
    • 33750267220 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimizers: A survey of the state-of-the-art
    • Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Research, 2006, 2(3): 287-308.
    • (2006) Int J of Computational Intelligence Research , vol.2 , Issue.3 , pp. 287-308
    • Sierra, M.R.1    Coello, C.A.C.2
  • 4
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
    • (2002) IEEE Trans on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3
  • 5
    • 35248851524 scopus 로고    scopus 로고
    • A non-dominated sorting particle swarm optimizer for multiobjective optimization
    • Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization[J]. Lecture Notes in Computer Science, 2003, 2723: 37-48.
    • (2003) Lecture Notes in Computer Science , vol.2723 , pp. 37-48
    • Li, X.D.1
  • 6
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multi-objective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3
  • 7
    • 84901406129 scopus 로고    scopus 로고
    • The role of ε-dominance in multi-objective particle swarm optimization methods
    • Canberra
    • Mostaghim S, Teich J. The role of ε-dominance in multi-objective particle swarm optimization methods[C]. Proc of IEEE Swarm Intelligence Symposium. Canberra, 2003: 1764-1771.
    • (2003) Proc of IEEE Swarm Intelligence Symposium , pp. 1764-1771
    • Mostaghim, S.1    Teich, J.2
  • 8
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based multi-objective optimization using crowding mutation and ε-dominance
    • Guanajuato
    • Sierra M R, Coello C A C. Improving PSO-based multi-objective optimization using crowding mutation and ε-dominance[C]. Int Conf on Evolutionary Multi-criterion Optimization. Guanajuato, 2005: 505-519.
    • (2005) Int Conf on Evolutionary Multi-criterion Optimization , pp. 505-519
    • Sierra, M.R.1    Coello, C.A.C.2
  • 12
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)
    • Indiana
    • Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)[C]. Swarm Intelligence Symposium 2003. Indiana, 2003: 26-33.
    • (2003) Swarm Intelligence Symposium 2003 , pp. 26-33
    • Mostaghim, S.1    Teich, J.2
  • 13
    • 33044501377 scopus 로고    scopus 로고
    • Multi-objective optimal design of alloy steels using adaptive weighted particle swarm optimization
    • Birmingham
    • Mahfouf M, Chen M Y, Linkens D A. Multi-objective optimal design of alloy steels using adaptive weighted particle swarm optimization[C]. Proc of Parallel Problem Solving from Nature-PPSN VIII. Birmingham, 2004: 762-771.
    • (2004) Proc of Parallel Problem Solving from Nature-PPSN VIII , pp. 762-771
    • Mahfouf, M.1    Chen, M.Y.2    Linkens, D.A.3
  • 16
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271.
    • (1999) IEEE Trans on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 17
    • 0005871804 scopus 로고    scopus 로고
    • PESA-II: Region-based selection in evolutionary multiobjective optimization
    • San Francisco: Morgan Kaufmann
    • Corne D W, Jerram N R, Knowles J D, et al. PESA-II: Region-based selection in evolutionary multiobjective optimization[C]. Proc of the Genetic and Evolutionary Computing Conf. San Francisco: Morgan Kaufmann, 2001: 283-290.
    • (2001) Proc of the Genetic and Evolutionary Computing Conf , pp. 283-290
    • Corne, D.W.1    Jerram, N.R.2    Knowles, J.D.3
  • 18
    • 40249102027 scopus 로고    scopus 로고
    • RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
    • Zhang Q F, Zhou A, Jin Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 41-63.
    • (2008) IEEE Trans on Evolutionary Computation , vol.12 , Issue.1 , pp. 41-63
    • Zhang, Q.F.1    Zhou, A.2    Jin, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.