메뉴 건너뛰기




Volumn , Issue , 2009, Pages 153-160

How novelty search escapes the deceptive trap of learning to learn

Author keywords

Adaptation; Learning; Neat; Neural networks; Neuroevolution; Neuromodulation; Novelty search

Indexed keywords

ADAPTIVE BEHAVIOR; ARTIFICIAL NEURAL NETWORKS; LEARNING TO LEARN; NEAT; NEUROEVOLUTION; NEUROMODULATION; SEARCH ALGORITHMS;

EID: 72749096047     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569923     Document Type: Conference Paper
Times cited : (78)

References (22)
  • 1
    • 65549111685 scopus 로고    scopus 로고
    • Measurement of the top quark mass with dilepton events selected using neuroevolution at CDF
    • To appear
    • T. Aaltonen et al. Measurement of the top quark mass with dilepton events selected using neuroevolution at CDF. Physical Review Letters, 2009. To appear.
    • (2009) Physical Review Letters
    • Aaltonen, T.1
  • 2
    • 35248820581 scopus 로고    scopus 로고
    • Exploring the T-Maze: Evolving Learning-Like Robot Behaviors using CTRNNs
    • 2nd European Workshop on Evolutionary Robotics EvoRob'2003
    • J. Blynel and D. Floreano. Exploring the T-Maze: Evolving Learning-Like Robot Behaviors using CTRNNs. In 2nd European Workshop on Evolutionary Robotics (EvoRob'2003), Lecture Notes in Computer Science, 2003.
    • (2003) Lecture Notes in Computer Science
    • Blynel, J.1    Floreano, D.2
  • 3
    • 0019856201 scopus 로고
    • Classical conditioning in a simple withdrawal reflex in Aplysia californica
    • T. Carew, E. Walters, and E. Kandel. Classical conditioning in a simple withdrawal reflex in Aplysia californica. The Journal of Neuroscience, 1(12):1426-1437, 1981.
    • (1981) The Journal of Neuroscience , vol.1 , Issue.12 , pp. 1426-1437
    • Carew, T.1    Walters, E.2    Kandel, E.3
  • 4
    • 84958949201 scopus 로고    scopus 로고
    • Every niching method has its niche: Fitness sharing and implicit sharing compared
    • P. Darwen and Y. Yao. Every niching method has its niche: Fitness sharing and implicit sharing compared. Parallel Problem Solving from Nature (PPSN IV), pages 398-407, 1996.
    • (1996) Parallel Problem Solving from Nature (PPSN IV) , pp. 398-407
    • Darwen, P.1    Yao, Y.2
  • 5
    • 0343962236 scopus 로고    scopus 로고
    • Evolutionary robots with online self-organization and behavioral fitness
    • D. Floreano and J. Urzelai. Evolutionary robots with online self-organization and behavioral fitness. Neural Networks, 13:431-443, 2000.
    • (2000) Neural Networks , vol.13 , pp. 431-443
    • Floreano, D.1    Urzelai, J.2
  • 9
    • 21244498631 scopus 로고    scopus 로고
    • The hierarchical fair competition (hfc) framework for sustainable evolutionary algorithms
    • PMID: 15969902
    • J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg. The hierarchical fair competition (hfc) framework for sustainable evolutionary algorithms. Evolutionary Computation, 13(2):241-277, 2005. PMID: 15969902.
    • (2005) Evolutionary Computation , vol.13 , Issue.2 , pp. 241-277
    • Hu, J.1    Goodman, E.2    Seo, K.3    Fan, Z.4    Rosenberg, R.5
  • 14
    • 6344234515 scopus 로고    scopus 로고
    • Guiding or hiding: Explorations into the effects of learning on the rate of evolution
    • MIT Press
    • G. Mayley. Guiding or hiding: Explorations into the effects of learning on the rate of evolution. In Fourth European Conference on Artificial Life, pages 135-144. MIT Press, 1997.
    • (1997) Fourth European Conference on Artificial Life , pp. 135-144
    • Mayley, G.1
  • 15
    • 0036972336 scopus 로고    scopus 로고
    • Evolution of reinforcement learning in uncertain environments: A simple explanation for complex foraging behaviors
    • Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. Evolution of reinforcement learning in uncertain environments: A simple explanation for complex foraging behaviors. Adaptive Behavior, 10(1):5-24, 2002.
    • (2002) Adaptive Behavior , vol.10 , Issue.1 , pp. 5-24
    • Niv, Y.1    Joel, D.2    Meilijson, I.3    Ruppin, E.4
  • 16
    • 0032682507 scopus 로고    scopus 로고
    • Learning and evolution
    • July
    • S. Nolfi and D. Floreano. Learning and evolution. Autonomous Robots, 7(1):89-113, July 1999.
    • (1999) Autonomous Robots , vol.7 , Issue.1 , pp. 89-113
    • Nolfi, S.1    Floreano, D.2
  • 17
    • 0002898235 scopus 로고
    • Learning and evolution in neural networks
    • S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks. Adaptive Behavior, 3:5-28, 1994.
    • (1994) Adaptive Behavior , vol.3 , pp. 5-28
    • Nolfi, S.1    Parisi, D.2    Elman, J.L.3
  • 18
    • 84874614281 scopus 로고    scopus 로고
    • Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios
    • Cambridge, MA, MIT Press
    • A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano. Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. In Artificial Life XI, pages 569-576, Cambridge, MA, 2008. MIT Press.
    • (2008) Artificial Life XI , pp. 569-576
    • Soltoggio, A.1    Bullinaria, J.A.2    Mattiussi, C.3    Dürr, P.4    Floreano, D.5
  • 20
    • 72749109194 scopus 로고    scopus 로고
    • K. O. Stanley. rtNEAT C++ software homepage: www.cs.utexas.edu/users/ nn/keyword?rtneat. 2006-2008.
    • K. O. Stanley. rtNEAT C++ software homepage: www.cs.utexas.edu/users/ nn/keyword?rtneat. 2006-2008.
  • 22
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99-127, 2002.
    • (2002) Evolutionary Computation , vol.10 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.