메뉴 건너뛰기




Volumn 15, Issue 4, 2009, Pages 782-809

Penalization of Dirichlet optimal control problems

Author keywords

Dirichlet optimal control; Regularity of solutions; Robin penalization

Indexed keywords

DIRICHLET; ERROR ESTIMATES; NUMERICAL EXPERIMENTS; OPTIMAL CONTROL PROBLEM; OPTIMAL CONTROLS; REGULARITY OF SOLUTIONS; SEMILINEAR ELLIPTIC EQUATION;

EID: 72649103254     PISSN: 12928119     EISSN: 12623377     Source Type: Journal    
DOI: 10.1051/cocv:2008049     Document Type: Article
Times cited : (56)

References (17)
  • 1
    • 0031109004 scopus 로고    scopus 로고
    • Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls
    • J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 18 (1997) 235-250.
    • (1997) Numer. Funct. Anal. Optim. , vol.18 , pp. 235-250
    • Alibert, J.-J.1    Raymond, J.-P.2
  • 2
    • 0344153924 scopus 로고    scopus 로고
    • Singular perturbation for the Dirichlet boundary control of elliptic problems
    • F. Ben Belgacem, H. El Fekih and H. Metoui, Singular perturbation for the Dirichlet boundary control of elliptic problems. ESAIM: M2AN 37 (2003) 833-850.
    • (2003) ESAIM: M2AN , vol.37 , pp. 833-850
    • Ben Belgacem, F.1    El Fekih, H.2    Metoui, H.3
  • 3
    • 0038105509 scopus 로고    scopus 로고
    • A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions
    • F. Ben Belgacem, H. El Fekih and J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptot. Anal. 34 (2003) 121-136.
    • (2003) Asymptot. Anal. , vol.34 , pp. 121-136
    • Ben Belgacem, F.1    El Fekih, H.2    Raymond, J.-P.3
  • 4
    • 49149103235 scopus 로고    scopus 로고
    • Error estimates for the numerical approximation of Neumann control problems
    • E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39 (2008) 265-295.
    • (2008) Comput. Optim. Appl. , vol.39 , pp. 265-295
    • Casas, E.1    Mateos, M.2
  • 5
    • 34547960540 scopus 로고    scopus 로고
    • Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations
    • electronic
    • E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Contr. Opt. 45 (2006) 1586-1611 (electronic).
    • (2006) SIAM J. Contr. Opt. , vol.45 , pp. 1586-1611
    • Casas, E.1    Raymond, J.-P.2
  • 6
    • 33645774837 scopus 로고    scopus 로고
    • The stability in Ws,p(Ã) spaces of L2-projections on some convex sets
    • E. Casas and J.-P. Raymond, The stability in Ws,p(Ã) spaces of L2-projections on some convex sets. Numer. Funct. Anal. Optim. 27 (2006) 117-137.
    • (2006) Numer. Funct. Anal. Optim. , vol.27 , pp. 117-137
    • Casas, E.1    Raymond, J.-P.2
  • 7
    • 21144435790 scopus 로고    scopus 로고
    • Error estimates for the numerical approximation of boundary semilinear elliptic control problems
    • E. Casas, M. Mateos and F. Tröltzsch, Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31 (2005) 193-219.
    • (2005) Comput. Optim. Appl. , vol.31 , pp. 193-219
    • Casas, E.1    Mateos, M.2    Tröltzsch, F.3
  • 8
    • 8544220284 scopus 로고
    • Basic error estimates for elliptic problems
    • North-Holland, Amsterdam
    • P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, North-Holland, Amsterdam (1991) 17-351.
    • (1991) Handbook of Numerical Analysis II , pp. 17-351
    • Ciarlet, P.G.1
  • 9
    • 0038477513 scopus 로고    scopus 로고
    • A singularly perturbed mixed boundary value problem
    • M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Comm. Partial Diff. Eq. 21 (1996) 1919-1949.
    • (1996) Comm. Partial Diff. Eq. , vol.21 , pp. 1919-1949
    • Costabel, M.1    Dauge, M.2
  • 10
    • 21344474464 scopus 로고    scopus 로고
    • A proof of the trace theorem of Sobolev spaces on Lipschitz domains
    • Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Amer. Math. Soc. 124 (1996) 591-600.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 591-600
    • Ding, Z.1
  • 12
    • 0032166349 scopus 로고    scopus 로고
    • A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations
    • electronic
    • L.S. Hou and S.S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Contr. Opt. 36 (1998) 1795-1814 (electronic).
    • (1998) SIAM J. Contr. Opt. , vol.36 , pp. 1795-1814
    • Hou, L.S.1    Ravindran, S.S.2
  • 13
  • 14
    • 0000271720 scopus 로고
    • The inhomogeneous Dirichlet problem in Lipschitz domains
    • D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161-219.
    • (1995) J. Funct. Anal. , vol.130 , pp. 161-219
    • Jerison, D.1    Kenig, C.E.2
  • 16
    • 35448961156 scopus 로고    scopus 로고
    • Stokes and Navier-Stokes equations with nonhomogeneous conditions
    • J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 921-951.
    • (2007) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.24 , pp. 921-951
    • Raymond, J.-P.1
  • 17
    • 0000195746 scopus 로고
    • Le probl̀eme de dirichlet pour les équations elliptiques du second ordre ̀a coefficients discontinues
    • G. Stampacchia, Le probl̀eme de Dirichlet pour les équations elliptiques du second ordre ̀a coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258.
    • (1965) Ann. Inst. Fourier (Grenoble) , vol.15 , pp. 189-258
    • Stampacchia, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.