-
1
-
-
0010279046
-
-
Springer-Verlag, Berlin
-
S. BASU, R. POLLACK, AND M.-F. ROY, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, 2006.
-
(2006)
Algorithms in Real Algebraic Geometry
-
-
Basu, S.1
Pollack, R.2
Roy, M.-F.3
-
2
-
-
0003004622
-
Linear matrix inequalities in system and control theory
-
SIAM, Philadelphia
-
S. BOYD, L. EL GHAOUI, E. FERON, AND V. BALAKRISHNAN, Linear Matrix Inequalities in System and Control Theory, SIAM Stud. Appl. Math. 15, SIAM, Philadelphia, 1994.
-
(1994)
SIAM Stud. Appl. Math.
, vol.15
-
-
Boyd, S.1
El Ghaoui, L.2
Feron, E.3
Balakrishnan, V.4
-
4
-
-
0141740382
-
Extended matrix cube theorems with applications to μ-theory in control
-
A. BEN-TAL, A. NEMIROVSKI, AND C. ROOS, Extended matrix cube theorems with applications to μ-theory in control, Math. Oper. Res., 28 (2003), pp. 497-523.
-
(2003)
Math. Oper. Res.
, vol.28
, pp. 497-523
-
-
Ben-Tal, A.1
Nemirovski, A.2
Roos, C.3
-
5
-
-
39549097057
-
Degree bounds for polynomial verification of the matrix cube problem
-
SanDiego, CA, 2006, IEEE Press, Piscataway NJ
-
B.-D. CHEN AND S. LALL, Degree bounds for polynomial verification of the matrix cube problem, in Proceedings of the 45th IEEE Conference on Decision and Control, SanDiego, CA, 2006, IEEE Press, Piscataway NJ, 2006, pp. 4405-4410.
-
(2006)
Proceedings of the 45th IEEE Conference on Decision and Control
, pp. 4405-4410
-
-
Chen, B.-D.1
Lall, S.2
-
6
-
-
68449087853
-
Semidefinite representation of convex sets
-
to appear
-
J. W. HELTON AND J. NIE, Semidefinite representation of convex sets, Math. Program., to appear.
-
Math. Program.
-
-
Helton, J.W.1
Nie, J.2
-
7
-
-
70450210254
-
Sufficient and necessary conditions for semidefinite representability of convex hulls and sets
-
J. W. HELTON AND J. NIE, Sufficient and necessary conditions for semidefinite representability of convex hulls and sets, SIAM J. Optim., 20 (2009), pp. 759-791.
-
(2009)
SIAM J. Optim.
, vol.20
, pp. 759-791
-
-
Helton, J.W.1
Nie, J.2
-
8
-
-
34247216675
-
Linear matrix inequality representation of sets
-
J. W. HELTON AND V. VlNNIKOV, Linear matrix inequality representation of sets, Comm. Pure Appl. Math., 60 (2007), pp. 654-674.
-
(2007)
Comm. Pure Appl. Math.
, vol.60
, pp. 654-674
-
-
Helton, J.W.1
Vlnnikov, V.2
-
10
-
-
72449128415
-
-
S. Lang, Algebra, 3rd ed., Springer-Verlag, New York
-
S. LANG, Algebra, 3rd ed., Springer-Verlag, New York, 2000.
-
(2000)
-
-
-
12
-
-
77954728894
-
Semidefinite representation of the k-ellipse, in algorithms in algebraic geometry
-
A. Dickenstein, F.-O. Schreyer, and A. Sommese, eds., Springer, New York
-
J. NIE, P. PARRILO, AND B. STURMFELS, Semidefinite representation of the k-ellipse, in Algorithms in Algebraic Geometry, IMA Vol. Math. Appl. 146, A. Dickenstein, F.-O. Schreyer, and A. Sommese, eds., Springer, New York, 2008, pp. 117-132.
-
(2008)
IMA Vol. Math. Appl.
, vol.146
, pp. 117-132
-
-
Nie, J.1
Parrilo, P.2
Sturmfels, B.3
-
14
-
-
0042839371
-
Some geometric results in semidefinite programming
-
M. RAMANA AND A. J. GOLDMAN, Some geometric results in semidefinite programming,J. Global Optim., 7 (1995), pp. 33-50.
-
(1995)
J. Global Optim.
, vol.7
, pp. 33-50
-
-
Ramana, M.1
Goldman, A.J.2
-
15
-
-
0033296299
-
Sedumi 1.02, A MATLAB toolbox for optimization over symmetric cones
-
J. F. STURM, Sedumi 1.02, A MATLAB toolbox for optimization over symmetric cones,Optim. Methods Softw., 11/12 (1999), pp. 625-653.
-
(1999)
Optim. Methods Softw.
, vol.11-12
, pp. 625-653
-
-
Sturm, J.F.1
-
16
-
-
0003395487
-
-
H. WOLKOWICZ, R. Saigal, AND L. Vandenberghe, EDS
-
H. WOLKOWICZ, R. SAIGAL, AND L. VANDENBERGHE, EDS., Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, Dordrecht, he Netherlands, 2000.
-
(2000)
Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, Dordrecht, He Netherlands
-
-
|