-
1
-
-
85093235125
-
Online Models for Content Optimization
-
D. Agarwal, B. Chen, P. Elango, R. Ramakrishnan, N. Motgi, S. Roy, and J. Zachariah. Online Models for Content Optimization. In NIPS, 2008.
-
(2008)
NIPS
-
-
Agarwal, D.1
Chen, B.2
Elango, P.3
Ramakrishnan, R.4
Motgi, N.5
Roy, S.6
Zachariah, J.7
-
2
-
-
33750341480
-
Improving Web Search Ranking by Incorporating User Behavior Information
-
E. Agichtein, E. Brill, and S. Dumais. Improving Web Search Ranking by Incorporating User Behavior Information. In ACM SIGIR, pages 19-26, 2006.
-
(2006)
ACM SIGIR
, pp. 19-26
-
-
Agichtein, E.1
Brill, E.2
Dumais, S.3
-
4
-
-
31844446958
-
Learning to Rank using Gradient Descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank using Gradient Descent. In ICML, 2005.
-
(2005)
ICML
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
8
-
-
84866788723
-
-
G. M. D. Corso, A. Gullí, and F. Romani. Ranking a Stream of News. In Proceedings of the 14th international conference on World Wide Web, pages 97-106, 2005.
-
G. M. D. Corso, A. Gullí, and F. Romani. Ranking a Stream of News. In Proceedings of the 14th international conference on World Wide Web, pages 97-106, 2005.
-
-
-
-
9
-
-
70349100410
-
Integration of News Content into Web Results
-
F. Diaz. Integration of News Content into Web Results. In WSDM Conference, 2009.
-
(2009)
WSDM Conference
-
-
Diaz, F.1
-
10
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
J. Friedman. Greedy Function Approximation: a Gradient Boosting Machine. Annals of Statistics, 29(5), 2001.
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
-
-
Friedman, J.1
-
11
-
-
0038107511
-
Cell-Probe Lower Bounds for the Partial Match Problem
-
T. Jayram, S. Khot, R. Kumar, and Y. Rabani. Cell-Probe Lower Bounds for the Partial Match Problem. In STOC, 2003.
-
(2003)
STOC
-
-
Jayram, T.1
Khot, S.2
Kumar, R.3
Rabani, Y.4
-
12
-
-
0343169734
-
A probabilistic model of information retrieval: Development and comparative experiments
-
K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: Development and comparative experiments. Information Processing and Management, 36(6), 2000.
-
(2000)
Information Processing and Management
, vol.36
, Issue.6
-
-
Jones, K.S.1
Walker, S.2
Robertson, S.E.3
-
14
-
-
72449196138
-
Using Sketches to Estimate Two-way and Multi-way Associations
-
P. Li and K. W. Church. Using Sketches to Estimate Two-way and Multi-way Associations. Computational Linguistics, 33, 2007.
-
(2007)
Computational Linguistics
, vol.33
-
-
Li, P.1
Church, K.W.2
-
15
-
-
57549108344
-
-
X. Li, Y.-Y. Wang, and A. Acero. Learning Query Intent from Regularized Click Graphs. In In Proc. ACM of SIGIR, 2008.
-
X. Li, Y.-Y. Wang, and A. Acero. Learning Query Intent from Regularized Click Graphs. In In Proc. ACM of SIGIR, 2008.
-
-
-
-
16
-
-
0025952277
-
Divergence Measures based on the Shannon Entropy
-
J. Lin. Divergence Measures based on the Shannon Entropy. IEEE Trans. on Information Theory, 37(1), 1991.
-
(1991)
IEEE Trans. on Information Theory
, vol.37
, Issue.1
-
-
Lin, J.1
-
20
-
-
72449152582
-
Active Exploration for Learning Rankings from Clickthrough Data
-
F. Radlinski and T. Joachims. Active Exploration for Learning Rankings from Clickthrough Data. In ACM SIKDD, 2007.
-
(2007)
ACM SIKDD
-
-
Radlinski, F.1
Joachims, T.2
-
22
-
-
35348840947
-
Predicting Clicks: Estimating the Click-Through Rate for New Ads
-
M. Richardson, E. Dominowska, and R. Ragno. Predicting Clicks: Estimating the Click-Through Rate for New Ads. In WWW Conference, pages 521-529, 2007.
-
(2007)
, pp. 521-529
-
-
Richardson, M.1
Dominowska, E.2
Ragno, R.3
-
26
-
-
70349265131
-
Ranking, Boosting, and Model Adaptation
-
Technical report, Microsoft Research
-
Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Ranking, Boosting, and Model Adaptation. Technical report, Microsoft Research, 2008.
-
(2008)
-
-
Wu, Q.1
Burges, C.J.2
Svore, K.M.3
Gao, J.4
|