메뉴 건너뛰기




Volumn , Issue , 2009, Pages 3-10

Canonical contextual distance for large-scale image annotation and retrieval

Author keywords

Probabilistic canonical correlation analysis; Scalable learning; Similarity measure

Indexed keywords

CANONICAL CORRELATION ANALYSIS; DATA SETS; ENTIRE SYSTEM; GENERIC IMAGES; IMAGE ANNOTATION; IMAGE FEATURES; LEARNING METHODS; LEARNING SIMILARITY; METHOD OF IMAGES; MULTIPLE LABELS; PROBABILISTIC STRUCTURES; RESEARCH FIELDS; SEARCH PROCESS; SIMILARITY MEASURE; VISUAL KNOWLEDGE; WEB IMAGES;

EID: 72449197992     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1631058.1631062     Document Type: Conference Paper
Times cited : (6)

References (28)
  • 1
    • 33745859053 scopus 로고    scopus 로고
    • A probabilistic interpretation of canonical correlation analysis
    • Technical Report 688, Department of Statistics, University of California, Berkeley
    • F. R. Bach and M. I. Jordan. A probabilistic interpretation of canonical correlation analysis. Technical Report 688, Department of Statistics, University of California, Berkeley, 2005.
    • (2005)
    • Bach, F.R.1    Jordan, M.I.2
  • 7
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu, K. Barnard, and D. F. N. Freitas. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proc. ECCV, pages 349-354, 2002.
    • (2002) Proc. ECCV , pp. 349-354
    • Duygulu, P.1    Barnard, K.2    Freitas, D.F.N.3
  • 8
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In IEEE CVPR 2004, Workshop on Generative-Model Based Vision, 2004.
    • (2004) IEEE CVPR 2004, Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 9
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In Proc. IEEE CVPR, pages 524-531, 2005.
    • (2005) Proc. IEEE CVPR , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 10
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In Proc. IEEE CVPR, volume 2, pages 1002-1009, 2004.
    • (2004) Proc. IEEE CVPR , vol.2 , pp. 1002-1009
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 13
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis; an overview with application to learning methods
    • D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis; an overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 14
    • 70350666497 scopus 로고    scopus 로고
    • Multi-progressive model for web image annotation
    • F. He, N. Yu, and X. Rui. Multi-progressive model for web image annotation. In Proc. ACM Multimedia, pages 825-828, 2008.
    • (2008) Proc. ACM Multimedia , pp. 825-828
    • He, F.1    Yu, N.2    Rui, X.3
  • 15
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 41(2):177-196, 2001.
    • (2001) Machine Learning , vol.41 , Issue.2 , pp. 177-196
    • Hofmann, T.1
  • 16
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28:312-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 312-377
    • Hotelling, H.1
  • 17
    • 0000989042 scopus 로고
    • A sketch retrieval method for full color image database -query by visual example-
    • T. Kato, T. Kurita, N. Otsu, and K. Hirata. A sketch retrieval method for full color image database -query by visual example-. In Proc. ICPR, volume 2, pages 213-216, 1992.
    • (1992) Proc. ICPR , vol.2 , pp. 213-216
    • Kato, T.1    Kurita, T.2    Otsu, N.3    Hirata, K.4
  • 18
    • 24944515085 scopus 로고    scopus 로고
    • A model for learning the semantics of pictures
    • V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning the semantics of pictures. In Proc. NIPS, 2003.
    • (2003) Proc. NIPS
    • Lavrenko, V.1    Manmatha, R.2    Jeon, J.3
  • 19
    • 34547198893 scopus 로고    scopus 로고
    • Image annotation by large-scale content-based image retrieval
    • X. Li, L. Chen, L. Zhang, F. Lin, and W. Y. Ma. Image annotation by large-scale content-based image retrieval. In Proc. ACM Multimedia, pages 607-610, 2006.
    • (2006) Proc. ACM Multimedia , pp. 607-610
    • Li, X.1    Chen, L.2    Zhang, L.3    Lin, F.4    Ma, W.Y.5
  • 21
    • 56749168888 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In Proc. ECCV, pages 316-329, 2008.
    • (2008) Proc. ECCV , pp. 316-329
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 22
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for english
    • G. A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 24
    • 70350676389 scopus 로고    scopus 로고
    • High-performance image annotation and retrieval for weakly labeled images using latent space learning
    • H. Nakayama, T. Harada, Y. Kuniyoshi, and N. Otsu. High-performance image annotation and retrieval for weakly labeled images using latent space learning. In Proc. PCM, pages 601-610, 2008.
    • (2008) Proc. PCM , pp. 601-610
    • Nakayama, H.1    Harada, T.2    Kuniyoshi, Y.3    Otsu, N.4
  • 25
    • 38049059799 scopus 로고    scopus 로고
    • Bipartite graph reinforcement model for web image annotation
    • X. Rui, M. Li, Z. Li, W. Y. Ma, and N. Yu. Bipartite graph reinforcement model for web image annotation. In Proc. ACM Multimedia, pages 585-594, 2007.
    • (2007) Proc. ACM Multimedia , pp. 585-594
    • Rui, X.1    Li, M.2    Li, Z.3    Ma, W.Y.4    Yu, N.5
  • 26
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and Y. Weiss. 80 million tiny images: A large dataset for non-parametric object and scene recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(11):1958-1970, 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 28
    • 2342527783 scopus 로고    scopus 로고
    • Generic image classification using visual knowledge on the web
    • K. Yanai. Generic image classification using visual knowledge on the web. In Proc. ACM Multimedia, pages 167-176, 2003.
    • (2003) Proc. ACM Multimedia , pp. 167-176
    • Yanai, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.