-
2
-
-
0002597170
-
-
b) I. D. Campbell, G. Eglinton, W. Henderson, R. A. Raphael, Chem. Commun. 1966, 87-89.
-
(1966)
Chem. Commun.
, pp. 87-89
-
-
Campbell, I.D.1
Eglinton, G.2
Henderson, W.3
Raphael, R.A.4
-
3
-
-
84890987287
-
-
(Eds.: F. Diederich. P.J. Stang, R. R. Tykwinski), Wiley-VCH, Weinheim
-
a) C. S. Jones. M. J. O'Connor, M. M. Haley in Acetylene Chemistry (Eds.: F. Diederich. P.J. Stang, R. R. Tykwinski), Wiley-VCH, Weinheim, 2005, pp. 303-385:
-
(2005)
Acetylene Chemistry
, pp. 303-385
-
-
Jones, C.S.1
O'Connor, M.J.2
Haley, M.M.3
-
5
-
-
33846187214
-
-
c) E. L. Spitler, C. A. Johnson II, M. M. Haley, Chem. Rev. 2006, 106, 5344-5386.
-
(2006)
Chem. Rev.
, vol.106
, pp. 5344-5386
-
-
Spitler, E.L.1
Johnson II, C.A.2
Haley, M.M.3
-
7
-
-
0035658848
-
-
b) A. Sarkar, J.J. Pak, G.W. Rayfield. M. M. Haley, J. Mater. Chem. 2001, 11, 2943-2945;
-
(2001)
J. Mater. Chem.
, vol.11
, pp. 2943-2945
-
-
Sarkar, A.1
Pak, J.J.2
Rayfield, G.W.3
Haley, M.M.4
-
9
-
-
3242684255
-
-
Angew. Chem. Int. Ed. 2004, 43, 1694-1697:
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 1694-1697
-
-
-
10
-
-
8844261894
-
-
d) M. Sonoda. Y. Sakai. T. Yoshimura. Y. Tobe, K. Kamada. Chem. Lett. 2004, 33, 972-973:
-
(2004)
Chem. Lett.
, vol.33
, pp. 972-973
-
-
Sonoda, M.1
Sakai, Y.2
Yoshimura, T.3
Tobe, Y.4
Kamada, K.5
-
11
-
-
14744273171
-
-
e) J. A. Marsden, J. J. Miller, L. D. Shirtcliff, M. M. Haley, J. Am. Chem. Soc. 2005, 127, 2464-2476.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 2464-2476
-
-
Marsden, J.A.1
Miller, J.J.2
Shirtcliff, L.D.3
Haley, M.M.4
-
12
-
-
33646448727
-
-
Examples for molecular assemblies, see: a) H. Enozawa. M. Hasegawa, D. Takamatsu, K. Fukui, M. Iyoda, Org. Lett. 2006, 8, 1917-1920:
-
(2006)
Org. Lett.
, vol.8
, pp. 1917-1920
-
-
Enozawa, H.1
Hasegawa, M.2
Takamatsu, D.3
Fukui, K.4
Iyoda, M.5
-
13
-
-
33746366233
-
-
b) S. H. Seo, T. V. Jones. H. Seyler, J. O. Peters, T. H. Kim, J.Y. Chang, G.N. Tew, J. Am. Chem. Soc. 2006, 128, 9264-9265:
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 9264-9265
-
-
Seo, S.H.1
Jones, T.V.2
Seyler, H.3
Peters, J.O.4
Kim, T.H.5
Chang, J.Y.6
Tew, G.N.7
-
15
-
-
33845209089
-
-
Angew. Chem. Int. Ed. 2006, 45, 7526-7530;
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 7526-7530
-
-
-
16
-
-
33845917799
-
-
d) K. Tahara. S. Furukawa, H. Uji-i, T. Uchino. T, Ichikawa. J. Zhang, W. Mamdouh. M. Sonoda. F. C. De Schryver, S. De Feyter, Y. Tobe. J. Am. Chem. Soc. 2006, 128, 16613-16625.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 16613-16625
-
-
Tahara, K.1
Furukawa, S.2
Uji-i, H.3
Uchino, T.4
Ichikawa, T.5
Zhang, J.6
Mamdouh, W.7
Sonoda, M.8
De Schryver, F.C.9
De Feyter, S.10
Tobe, Y.11
-
18
-
-
53549091562
-
-
b) I. Hisaki, Y. Sakamoto. H. Shigemitsu, N. Tohnai. M. Miyata, S. Seki. A. Saeki, S. Tagawa. Chem. Eur. J. 2008, 14, 4178-4187;
-
(2008)
Chem. Eur. J.
, vol.14
, pp. 4178-4187
-
-
Hisaki, I.1
Sakamoto, Y.2
Shigemitsu, H.3
Tohnai, N.4
Miyata, M.5
Seki, S.6
Saeki, A.7
Tagawa, S.8
-
19
-
-
54849434396
-
-
c) K. Tahara, T. Fujita, M. Sonoda, M. Shiro, Y. Tobe. J. Am. Chem. Soc. 2008, 130, 14339-14345.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14339-14345
-
-
Tahara, K.1
Fujita, T.2
Sonoda, M.3
Shiro, M.4
Tobe, Y.5
-
20
-
-
0002957649
-
-
3-symmelric molecules as examples, see: a) A. Anthony, G. R. Desiraju. R. K. R. Jelti, S. S. Kuduva, N. N. L. Madhavi, A. Nangia, R. Thaimatlam. V.R. Thallad. Cryst. Eng. 1998, 1, 1-18;
-
(1998)
Cryst. Eng.
, vol.1
, pp. 1-18
-
-
Anthony, A.1
Desiraju, G.R.2
Jelti, R.K.R.3
Kuduva, S.S.4
Madhavi, N.N.L.5
Nangia, A.6
Thaimatlam, R.7
Thallad, V.R.8
-
21
-
-
19344373621
-
-
b) P. K. Thallapally. K. Chakraborty, A. K. Katz. H. L. Carrell, S. Kotha, G. R. Desiraju, CrystEngComm 2001, 31, 1-3.
-
(2001)
CrystEngComm
, vol.31
, pp. 1-3
-
-
Thallapally, P.K.1
Chakraborty, K.2
Katz, A.K.3
Carrell, H.L.4
Kotha, S.5
Desiraju, G.R.6
-
22
-
-
0000572267
-
-
Complexalion with metals such as Ni was reported, see: a) J. D. Ferrara, C. Tessier-Youngs, W. J. Youngs, J. Am. Chem. Soc. 1985, 107, 6719-6721;
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 6719-6721
-
-
Ferrara, J.D.1
Tessier-Youngs, C.2
Youngs, W.J.3
-
25
-
-
0024732017
-
-
d) J. D. Ferrara, A. A. Tanaka, C. Fierro, C. A. Tessier-Youngs, W.J. Youngs, Organometallics 1989, 8, 2089-2098;
-
(1989)
Organometallics
, vol.8
, pp. 2089-2098
-
-
Ferrara, J.D.1
Tanaka, A.A.2
Fierro, C.3
Tessier-Youngs, C.A.4
Youngs, W.J.5
-
26
-
-
0001473201
-
-
e) W. J. Youngs, J. D. Kinder, J. D. Bradshaw. C. A. Tessier, Organometallics 1993, 12, 2406-2407.
-
(1993)
Organometallics
, vol.12
, pp. 2406-2407
-
-
Youngs, W.J.1
Kinder, J.D.2
Bradshaw, J.D.3
Tessier, C.A.4
-
27
-
-
72449122544
-
-
3-symmetry
-
3-symmetry.
-
-
-
-
29
-
-
72449206322
-
-
For lhe details of crystallographic analyses, see the Supporting Information.
-
For lhe details of crystallographic analyses, see the Supporting Information.
-
-
-
-
30
-
-
72449188864
-
-
note
-
3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data-request/cif.
-
-
-
-
31
-
-
0003653494
-
-
In connection with a weak hydrogen bond such as C-H⋯X (X = O or N), a distance between C and X atoms can range from 3.0 to 4.0 Å, which is longer and more widely distributed than the distance observed in stronger hydrogen bond such as O-H⋯X (X = O or N) bond. The hydrogen bond angle C-H-X (X=O or N) of the weak hydrogen bond is also widely distributed in the range of 90 to 180°, although Desiraju and Steiner recommend a lower limit of 110° when accepting a C-H⋯O geometry as a hydrogen bond. See: a Oxford University Press, Oxford
-
In connection with a weak hydrogen bond such as C-H⋯X (X = O or N), a distance between C and X atoms can range from 3.0 to 4.0 Å, which is longer and more widely distributed than the distance observed in stronger hydrogen bond such as O-H⋯X (X = O or N) bond. The hydrogen bond angle C-H-X (X=O or N) of the weak hydrogen bond is also widely distributed in the range of 90 to 180°, although Desiraju and Steiner recommend a lower limit of 110° when accepting a C-H⋯O geometry as a hydrogen bond. See: a) G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, 1999;
-
(1999)
The Weak Hydrogen Bond in Structural Chemistry and Biology
-
-
Desiraju, G.R.1
Steiner, T.2
-
35
-
-
0034815246
-
-
Similar rhombohedral symmetry systems of chloroform solvate and disordered solvate have been reported, see
-
Similar rhombohedral symmetry systems of chloroform solvate and disordered solvate have been reported, see: R. Thaimattam, F. Xue, J. A. R. P. Sarma, T. C. W. Mak, G. R. Desiraju, J. Am. Chem. Soc. 2001, 123, 4432-4445.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4432-4445
-
-
Thaimattam, R.1
Xue, F.2
Sarma, J.A.R.P.3
Mak, T.C.W.4
Desiraju, G.R.5
-
36
-
-
0000168638
-
-
a) S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Phys. Chem. A 1999, 103, 8265-8271;
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 8265-8271
-
-
Tsuzuki, S.1
Honda, K.2
Uchimaru, T.3
Mikami, M.4
Tanabe, K.5
-
37
-
-
0034685467
-
-
b) S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 2000, 122, 3746-3753;
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 3746-3753
-
-
Tsuzuki, S.1
Honda, K.2
Uchimaru, T.3
Mikami, M.4
Tanabe, K.5
-
38
-
-
33847047838
-
-
c) K. Shibasaki, A. Fujii, M. Mikami, S. Tsuzuki, J. Phys. Chem. A 2007, 111, 753-758;
-
(2007)
Chem. A
, vol.111
, pp. 753-758
-
-
Shibasaki, K.1
Fujii, A.2
Mikami, M.3
Tsuzuki, S.4
Phys, J.5
-
40
-
-
72449201766
-
-
The HF calculation can evaluate the electrostatic and exchange-repulsion interactions but cannot do the dispersion interaction, while the MP2 calculation can evaluate the dispersion interaction, since the dispersion interaction has its origin in electron correlation. Thus, the HF calculation underestimates the attraction significantly compared to the MP2 calculation when the dispersion interaction is mainly responsible for the attraction in the complex: see reference [14]
-
The HF calculation can evaluate the electrostatic and exchange-repulsion interactions but cannot do the dispersion interaction, while the MP2 calculation can evaluate the dispersion interaction, since the dispersion interaction has its origin in electron correlation. Thus, the HF calculation underestimates the attraction significantly compared to the MP2 calculation when the dispersion interaction is mainly responsible for the attraction in the complex: see reference [14].
-
-
-
|