-
3
-
-
84859817220
-
Robust reductions from ranking to classification
-
August
-
M.-F. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, and G. Sorkin. Robust reductions from ranking to classification. Machine Learning, 72(1-2):139-153, August 2008.
-
(2008)
Machine Learning
, vol.72
, Issue.1-2
, pp. 139-153
-
-
Balcan, M.-F.1
Bansal, N.2
Beygelzimer, A.3
Coppersmith, D.4
Langford, J.5
Sorkin, G.6
-
4
-
-
26944498132
-
Reductions between classification tasks
-
A. Beygelzimer, V. Dani, T. Hayes, and J. Langford. Reductions between classification tasks. Electronic Colloquium on Computational Complexity, 11, 2004.
-
(2004)
Electronic Colloquium on Computational Complexity
, vol.11
-
-
Beygelzimer, A.1
Dani, V.2
Hayes, T.3
Langford, J.4
-
5
-
-
31844436676
-
Error limiting reductions between classification tasks
-
ACM
-
A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny. Error limiting reductions between classification tasks. In Proceedings of the 22th International Conference on Machine Learning, pages 49-56. ACM, 2005.
-
(2005)
Proceedings of the 22th International Conference on Machine Learning
, pp. 49-56
-
-
Beygelzimer, A.1
Dani, V.2
Hayes, T.3
Langford, J.4
Zadrozny, B.5
-
7
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
ACM
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th International Conference on Machine Learning, pages 129-136. ACM, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
8
-
-
65449139973
-
Structured learning for non-smooth ranking losses
-
ACM
-
S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Structured learning for non-smooth ranking losses. In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 88-96. ACM, 2008.
-
(2008)
Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 88-96
-
-
Chakrabarti, S.1
Khanna, R.2
Sawant, U.3
Bhattacharyya, C.4
-
13
-
-
84994174767
-
Sparse online learning via truncated gradient
-
abs/0806.4686
-
J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. CoRR, abs/0806.4686, 2008.
-
(2008)
CoRR
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
14
-
-
57349120367
-
Direct optimization of ranking measures
-
abs/0704.3359
-
Q. Le and A. Smola. Direct optimization of ranking measures. CoRR, abs/0704.3359, 2007.
-
(2007)
CoRR
-
-
Le, Q.1
Smola, A.2
-
15
-
-
72449178274
-
-
T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures. MSR-TR-2008-164, Microsoft Research, 2008.
-
T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures. MSR-TR-2008-164, Microsoft Research, 2008.
-
-
-
-
16
-
-
42549161120
-
Softrank: Optimizing non-smooth rank metrics
-
ACM
-
M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. In Proceedings of the International Conference on Web Search and Web Data Mining, pages 77-86. ACM, 2008.
-
(2008)
Proceedings of the International Conference on Web Search and Web Data Mining
, pp. 77-86
-
-
Taylor, M.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
19
-
-
72449121766
-
-
J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic programming. In LR4IR, 2007.
-
J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic programming. In LR4IR, 2007.
-
-
-
-
20
-
-
72449211677
-
-
Y. Yue and C. Burges. On using simultaneous perturbation stochastic approximation for learning to rank, and the empirical optimality of lambdarank. MSR-TR-2007-115, Microsoft Research, 2007.
-
Y. Yue and C. Burges. On using simultaneous perturbation stochastic approximation for learning to rank, and the empirical optimality of lambdarank. MSR-TR-2007-115, Microsoft Research, 2007.
-
-
-
-
21
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annuals of Statistics, 32:56-85, 2004.
-
(2004)
The Annuals of Statistics
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
22
-
-
72449205399
-
-
1 regularization. Technical Report TR-2007-005, Rutgers Statistics Department, 2007.
-
1 regularization. Technical Report TR-2007-005, Rutgers Statistics Department, 2007.
-
-
-
-
23
-
-
33845263263
-
On model selection consistency of lasso
-
December
-
P. Zhao and B. Yu. On model selection consistency of lasso. The Journal of Machine Learning Research, 7:2541-2563, December 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
|