메뉴 건너뛰기




Volumn , Issue , 2009, Pages 259-266

Robust sparse rank learning for non-smooth ranking measures

Author keywords

Information retrieval; Learn to rank; RSRank; Truncated gradient

Indexed keywords

BASELINE METHODS; GRADIENT DESCENT; LEARNING MODELS; LEARNING TO RANK; LOSS FUNCTIONS; NON-SMOOTH; NOVEL ALGORITHM; PAIRWISE CLASSIFICATION; PERFORMANCE GUARANTEES; RANK LEARNING; RANKING MEASURES; RANKING MODEL; SPARSE ALGORITHMS;

EID: 72449180896     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1571941.1571987     Document Type: Conference Paper
Times cited : (31)

References (23)
  • 13
    • 84994174767 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • abs/0806.4686
    • J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. CoRR, abs/0806.4686, 2008.
    • (2008) CoRR
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 14
    • 57349120367 scopus 로고    scopus 로고
    • Direct optimization of ranking measures
    • abs/0704.3359
    • Q. Le and A. Smola. Direct optimization of ranking measures. CoRR, abs/0704.3359, 2007.
    • (2007) CoRR
    • Le, Q.1    Smola, A.2
  • 15
    • 72449178274 scopus 로고    scopus 로고
    • T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures. MSR-TR-2008-164, Microsoft Research, 2008.
    • T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures. MSR-TR-2008-164, Microsoft Research, 2008.
  • 19
    • 72449121766 scopus 로고    scopus 로고
    • J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic programming. In LR4IR, 2007.
    • J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic programming. In LR4IR, 2007.
  • 20
    • 72449211677 scopus 로고    scopus 로고
    • Y. Yue and C. Burges. On using simultaneous perturbation stochastic approximation for learning to rank, and the empirical optimality of lambdarank. MSR-TR-2007-115, Microsoft Research, 2007.
    • Y. Yue and C. Burges. On using simultaneous perturbation stochastic approximation for learning to rank, and the empirical optimality of lambdarank. MSR-TR-2007-115, Microsoft Research, 2007.
  • 21
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annuals of Statistics, 32:56-85, 2004.
    • (2004) The Annuals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1
  • 22
    • 72449205399 scopus 로고    scopus 로고
    • 1 regularization. Technical Report TR-2007-005, Rutgers Statistics Department, 2007.
    • 1 regularization. Technical Report TR-2007-005, Rutgers Statistics Department, 2007.
  • 23
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • December
    • P. Zhao and B. Yu. On model selection consistency of lasso. The Journal of Machine Learning Research, 7:2541-2563, December 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.