메뉴 건너뛰기




Volumn , Issue , 2009, Pages 533-536

CoBoost learning of visual categories with 1st and 2 nd order features from Google images

Author keywords

1st and 2nd order features; Co training; CoBoost; Learn categories

Indexed keywords

ACTIVE LEARNING; BAG OF WORDS; BENCHMARK DATASETS; CO-TRAINING; CO-TRAINING ALGORITHM; DATA SETS; HIGH QUALITY; IMAGE DATASETS; LOCAL FEATURE; REDUNDANT FEATURES; SEMI-SUPERVISED; SPATIAL RELATIONSHIPS; UNSUPERVISED APPROACHES;

EID: 72449169398     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1631272.1631349     Document Type: Conference Paper
Times cited : (1)

References (10)
  • 1
    • 33845595951 scopus 로고    scopus 로고
    • T. L. Berg and D. A. Forsyth. Animals on the web. In CVPR, 2006.
    • T. L. Berg and D. A. Forsyth. Animals on the web. In CVPR, 2006.
  • 2
    • 72449139944 scopus 로고    scopus 로고
    • M. Collins and Y. Singer. Unsupervised models for named entity classification. In EMNLP/VLC, 1999.
    • M. Collins and Y. Singer. Unsupervised models for named entity classification. In EMNLP/VLC, 1999.
  • 3
    • 33745839880 scopus 로고    scopus 로고
    • R. Fergus, Feifei Li, P. Perona, and A. Zisserman. Learning object categories from google's image search. In ICCV, 2005.
    • R. Fergus, Feifei Li, P. Perona, and A. Zisserman. Learning object categories from google's image search. In ICCV, 2005.
  • 4
    • 34948829141 scopus 로고    scopus 로고
    • Li-Jia Li, Gang Wang, and Feifei Li. OPTIMOL: automatic object picture collection via incremental model learning. In CVPR, 2007.
    • Li-Jia Li, Gang Wang, and Feifei Li. OPTIMOL: automatic object picture collection via incremental model learning. In CVPR, 2007.
  • 5
    • 51949083215 scopus 로고    scopus 로고
    • D. Liu, G. Hua, P. Viola, and T. Chen. Integrated Feature Selection and Higher-order Spatial Feature Extraction for Object Categorization. In CVPR, 2008.
    • D. Liu, G. Hua, P. Viola, and T. Chen. Integrated Feature Selection and Higher-order Spatial Feature Extraction for Object Categorization. In CVPR, 2008.
  • 6
    • 72449123117 scopus 로고    scopus 로고
    • A. Opelt, A. Fussenegger, and P. Auer. Weak Hypotheses and Boosting for Generic Object Detection and Recognition. In ECCV, 2004.
    • A. Opelt, A. Fussenegger, and P. Auer. Weak Hypotheses and Boosting for Generic Object Detection and Recognition. In ECCV, 2004.
  • 7
    • 33845569004 scopus 로고    scopus 로고
    • S. Savarese, A. Criminisi, and J. Winn. Discriminative Object Class Models of Appearance and Shape by Correlatons. In CVPR, 2006.
    • S. Savarese, A. Criminisi, and J. Winn. Discriminative Object Class Models of Appearance and Shape by Correlatons. In CVPR, 2006.
  • 8
    • 50649094964 scopus 로고    scopus 로고
    • F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from the web. In ICCV, 2007.
    • F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from the web. In ICCV, 2007.
  • 9
    • 72449194155 scopus 로고    scopus 로고
    • J. Sivic, et al. Discovering Object Categories in Image Collections. In ICCV, 2005.
    • J. Sivic, et al. Discovering Object Categories in Image Collections. In ICCV, 2005.
  • 10
    • 33846580425 scopus 로고    scopus 로고
    • Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study
    • J. Zhang, et al. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. IJCV, 73(2):213-238, 2007.
    • (2007) IJCV , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.