메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Determining provenance in phishing websites using automated conceptual analysis

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED SYSTEMS; CLUSTER ANALYSIS TECHNIQUE; CONCEPTUAL ANALYSIS; CONFIDENTIAL DATA; LAW-ENFORCEMENT AGENCIES; PHISHERS; PHISHING; PHISHING ATTACKS; SOURCE CODES;

EID: 72449167874     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ECRIME.2009.5342614     Document Type: Conference Paper
Times cited : (16)

References (27)
  • 4
    • 0005044188 scopus 로고
    • Profiling: A hidden challenge to the regulation of data surveillance
    • R. Clarke. Profiling: A hidden challenge to the regulation of data surveillance. Journal of Law and Information Science, 4:403, 1993.
    • (1993) Journal of Law and Information Science , vol.4 , pp. 403
    • Clarke, R.1
  • 5
    • 72449134660 scopus 로고    scopus 로고
    • F. T. Commission. Identity theft survey report. Technical report, www.ftc.gov/os/2007/11/SynovateFinalReportIDTheft2006.pdf., 2007.
    • F. T. Commission. Identity theft survey report. Technical report, www.ftc.gov/os/2007/11/SynovateFinalReportIDTheft2006.pdf., 2007.
  • 7
    • 72449128919 scopus 로고    scopus 로고
    • H. S. A. H. Dinna N. M. N., Leau Y. B. and Y. A. S. Managing legal, consumers and commerce risks in phishing. In WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, 26, 2007.
    • H. S. A. H. Dinna N. M. N., Leau Y. B. and Y. A. S. Managing legal, consumers and commerce risks in phishing. In WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, volume 26, 2007.
  • 8
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Portland, OR, AAAI Press
    • M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pages 226-231, 1996.
    • (1996) Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 9
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied Statistics, 28:100-108, 1979.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 13
  • 14
    • 72449137495 scopus 로고    scopus 로고
    • Speeding up multi-class svm evaluation by pca and feature selection
    • H. Lei and V. Govindaraju. Speeding up multi-class svm evaluation by pca and feature selection. Feature Selection for Data Mining, 2005.
    • (2005) Feature Selection for Data Mining
    • Lei, H.1    Govindaraju, V.2
  • 16
    • 58049158943 scopus 로고    scopus 로고
    • Forensic characteristics of phishing - petty theft or organized crime?
    • J. Cordeiro, J. Filipe, and S. Hammoudi, editors, INSTICC Press
    • S. McCombie, P. Watters, A. Ng, and B. Watson. Forensic characteristics of phishing - petty theft or organized crime? In J. Cordeiro, J. Filipe, and S. Hammoudi, editors, WEBIST (1), pages 149-157. INSTICC Press, 2008.
    • (2008) WEBIST (1) , pp. 149-157
    • McCombie, S.1    Watters, P.2    Ng, A.3    Watson, B.4
  • 17
    • 72449169245 scopus 로고    scopus 로고
    • J. Milletary and C. Center. Technical trends in phishing attacks. US-CERT, Tech. Rep, 2005.
    • J. Milletary and C. Center. Technical trends in phishing attacks. US-CERT, Tech. Rep, 2005.
  • 18
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 6(1):90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 20
    • 72449126933 scopus 로고    scopus 로고
    • Phishscope: Tracking phish server clusters
    • July
    • J. S. Quarterman. Phishscope: Tracking phish server clusters. Journal of Digital Forensic Practice, 1(2):103-114, July 2006.
    • (2006) Journal of Digital Forensic Practice , vol.1 , Issue.2 , pp. 103-114
    • Quarterman, J.S.1
  • 22
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20(1):53-65, 1987.
    • (1987) Journal of computational and applied mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 24
    • 72449199309 scopus 로고    scopus 로고
    • Genres in formation? an exploratory study of web pages using cluster analysis
    • M. Santini. Genres in formation? an exploratory study of web pages using cluster analysis. Proc. CLUK, 5, 2005.
    • (2005) Proc. CLUK , vol.5
    • Santini, M.1
  • 26
    • 85084161247 scopus 로고    scopus 로고
    • Why johnny can't encrypt
    • A. Whitten and J. Tygar. Why johnny can't encrypt. USENIX Security, 1999:1, 1999.
    • (1999) USENIX Security , vol.1999 , pp. 1
    • Whitten, A.1    Tygar, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.