메뉴 건너뛰기




Volumn 31, Issue 3, 2009, Pages 918-941

Regularized total least squares: Computational aspects and error bounds

Author keywords

Error bounds; Ill posed problems; Inverse problems; Multi parameter regularization; Noisy operator; Noisy right hand side; Regularized total least squares

Indexed keywords

ERROR BOUND; ILL POSED PROBLEM; ILL-POSED PROBLEMS; MULTIPARAMETERS; NOISY OPERATORS; RIGHT-HAND SIDES; TOTAL LEAST SQUARES;

EID: 72449143085     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/070709086     Document Type: Article
Times cited : (36)

References (24)
  • 1
    • 34247386378 scopus 로고    scopus 로고
    • Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares
    • A. BECK, A. BEN-TAL, AND M. TEBOULLE, Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 425-445.
    • (2006) SIAM J. Matrix Anal. Appl. , vol.28 , pp. 425-445
    • Beck, A.1    Ben-Tal, A.2    Teboulle, M.3
  • 2
    • 85064780549 scopus 로고    scopus 로고
    • Convergence rates for tikhonov regularization from different kinds of smoothness conditions
    • A. BÖTTCHER, B. HOFMANN, U. TAUTENHAHN, AND Y. YAMAMOTO, Convergence rates for Tikhonov regularization from different kinds of smoothness conditions, Appl. Anal., 85 (2006), pp. 555-578.
    • (2006) Appl. Anal. , vol.85 , pp. 555-578
    • Böttcher, A.1    Hofmann, B.2    Tautenhahn, U.3    Yamamoto, Y.4
  • 3
    • 0041377826 scopus 로고    scopus 로고
    • Solving quadratically constrained least squares problem using a differential-geometric approach
    • L. EldéN, Solving quadratically constrained least squares problem using a differential-geometric approach, BIT, 42 (2002), pp. 323-335.
    • (2002) BIT , vol.42 , pp. 323-335
    • Eldén, L.1
  • 4
    • 0019370951 scopus 로고
    • Least squares with a quadratic constraint
    • W. GANDER, Least squares with a quadratic constraint, Numer. Math., 36 (1981), pp. 291-307.
    • (1981) Numer. Math. , vol.36 , pp. 291-307
    • Gander, W.1
  • 6
    • 0001678475 scopus 로고
    • Quadratically constrained least squares and quadratic problems
    • G. H. GOLUB AND U. VON MATT, Quadratically constrained least squares and quadratic problems, Numer. Math., 59 (1991), pp. 561-580.
    • (1991) Numer. Math. , vol.59 , pp. 561-580
    • Golub, G.H.1    Von Matt, U.2
  • 9
    • 13344267706 scopus 로고
    • Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems
    • P. C. HANSEN, Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1-35.
    • (1994) Numer. Algorithms , vol.6 , pp. 1-35
    • Hansen, P.C.1
  • 11
    • 0003197493 scopus 로고
    • The total least squares problem: Computational aspects and analysis
    • Philadelphia
    • S. VAN HUFFEL AND J. VANDEWALLE, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, 1991.
    • (1991) SIAM
    • Van Huffel, S.1    Vandewalle, J.2
  • 12
    • 0043210993 scopus 로고
    • On the approximate solution of operator equations of the first kind
    • V. K. IVANOV, On the approximate solution of operator equations of the first kind, USSR Comput. Math. Math. Phys., 6 (1966), pp. 1089-1094.
    • (1966) USSR Comput. Math. Math. Phys. , vol.6 , pp. 1089-1094
    • Ivanov, V.K.1
  • 15
    • 33846083183 scopus 로고    scopus 로고
    • Interpolation in variable Hilbert scales with application to inverse problems
    • P. MATHÉ AND U. TAUTENHAHN, Interpolation in variable Hilbert scales with application to inverse problems, Inverse Problems, 22 (2006), pp. 2271-2297.
    • (2006) Inverse Problems , vol.22 , pp. 2271-2297
    • Mathé, P.1    Tautenhahn, U.2
  • 16
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • V. A. MOROZOV, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., 7 (1966), pp. 414-417.
    • (1966) Soviet Math. Dokl. , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 17
    • 28544453228 scopus 로고    scopus 로고
    • Regularization in hilbert scales under general smoothing conditions
    • M. T. NAIR, S. V. PEREVERZEV, AND U. TAUTENHAHN, Regularization in Hilbert scales under general smoothing conditions, Inverse Problems, 21 (2005), pp. 1851-1869.
    • (2005) Inverse Problems , vol.21 , pp. 1851-1869
    • Nair, M.T.1    Pereverzev, S.V.2    Tautenhahn, U.3
  • 18
    • 17444432191 scopus 로고    scopus 로고
    • Efficient algorithms for solution of regularized total least squares
    • R. A. RENAUT AND H. GUO, Efficient algorithms for solution of regularized total least squares, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 457-476.
    • (2004) SIAM J. Matrix Anal. Appl. , vol.26 , pp. 457-476
    • Renaut, R.A.1    Guo, H.2
  • 19
    • 18244394807 scopus 로고    scopus 로고
    • Regularized total least squares based on quadratic eigenvalue problem solvers
    • D. SIMA, S. VAN HUFFEL, AND G. H. GOLUB, Regularized total least squares based on quadratic eigenvalue problem solvers, BIT, 44 (2004), pp. 793-812.
    • (2004) BIT , vol.44 , pp. 793-812
    • Sima, D.1    Van Huffel, S.2    Golub, G.H.3
  • 20
    • 0000414254 scopus 로고    scopus 로고
    • Error estimates for regularization methods in hilbert scales
    • U. TAUTENHAHN, Error estimates for regularization methods in Hilbert scales, SIAMJ. Numer. Anal., 33 (1996), pp. 2120-2130.
    • (1996) SIAMJ. Numer. Anal. , vol.33 , pp. 2120-2130
    • Tautenhahn, U.1
  • 21
    • 0032047113 scopus 로고    scopus 로고
    • Optimality for ill-posed problems under general source conditions
    • U. TAUTENHAHN, Optimality for ill-posed problems under general source conditions, Numer. Funct. Anal. Optim., 19 (1998), pp. 377-398.
    • (1998) Numer. Funct. Anal. Optim. , vol.19 , pp. 377-398
    • Tautenhahn, U.1
  • 23
    • 0008442191 scopus 로고
    • Use of the regularization methods in non-linear problems
    • A. N. TIKHONOV AND V. B. GLASKO, Use of the regularization methods in non-linear problems, USSR Comput. Math. Math. Phys., 5 (1965), pp. 93-107.
    • (1965) USSR Comput. Math. Math. Phys. , vol.5 , pp. 93-107
    • Tikhonov, A.N.1    Glasko, V.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.