메뉴 건너뛰기




Volumn 5851 LNCS, Issue , 2009, Pages 249-258

A graph-based semi-supervised algorithm for protein function prediction from interaction maps

Author keywords

[No Author keywords available]

Indexed keywords

CROSS VALIDATION; EXPERIMENTAL CONDITIONS; GRAPH-BASED; IN-NETWORK; LABELED PROTEINS; NETWORK DATA; PREDICTIVE ACCURACY; PROTEIN FUNCTION PREDICTION; PROTEIN FUNCTIONS; PROTEOMICS; SEMI-SUPERVISED ALGORITHM; STATE-OF-THE-ART ALGORITHMS;

EID: 72449133417     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-11169-3_18     Document Type: Conference Paper
Times cited : (18)

References (17)
  • 1
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • Bader, G., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)
    • (2003) BMC Bioinformatics , vol.4 , pp. 2
    • Bader, G.1    Hogue, C.W.2
  • 3
    • 33845864703 scopus 로고    scopus 로고
    • Computational prediction of cancer-gene function
    • Hu, P., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nature Reviews Cancer 7(1), 23-34 (2007)
    • (2007) Nature Reviews Cancer , vol.7 , Issue.1 , pp. 23-34
    • Hu, P.1    Bader, G.2    Wigle, D.A.3    Emili, A.4
  • 6
    • 33845701686 scopus 로고    scopus 로고
    • The art of gene function prediction
    • Murali, T.M., Wu, C.J., Kasif, S.: The art of gene function prediction. Nature Biotechnology 24(12), 1474-1476 (2006)
    • (2006) Nature Biotechnology , vol.24 , Issue.12 , pp. 1474-1476
    • Murali, T.M.1    Wu, C.J.2    Kasif, S.3
  • 7
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, i302-i310 (2005)
    • (2005) Bioinformatics , vol.21
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 8
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551-1555 (2002)
    • (2002) Science , vol.297 , Issue.5586 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3    Oltvai, Z.N.4    Barabasi, A.L.5
  • 9
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski, B., Uetz, P., Field, S.: A network of protein-protein interactions in yeast. Nature Biotechnology 18, 1257-1261 (2000)
    • (2000) Nature Biotechnology , vol.18 , pp. 1257-1261
    • Schwikowski, B.1    Uetz, P.2    Field, S.3
  • 10
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Molecular System Biology 3(88), 1-13 (2007)
    • (2007) Molecular System Biology , vol.3 , Issue.88 , pp. 1-13
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 11
    • 34047202181 scopus 로고    scopus 로고
    • Deciphering protein-protein interactions. part i. experimental techniques and databases
    • Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. part i. experimental techniques and databases. PLoS Computational Biology 3(3), 337-344 (2007)
    • (2007) PLoS Computational Biology , vol.3 , Issue.3 , pp. 337-344
    • Shoemaker, B.A.1    Panchenko, A.R.2
  • 12
    • 33745805365 scopus 로고    scopus 로고
    • Srinivasan, B.S., Novak, A.F., Flannick, J.A., Batzoglou, S., McAdams, H.H.: Integrated protein interaction networks for 11 microbes. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), 3909, pp. 1-14. Springer, Heidelberg (2006)
    • Srinivasan, B.S., Novak, A.F., Flannick, J.A., Batzoglou, S., McAdams, H.H.: Integrated protein interaction networks for 11 microbes. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 1-14. Springer, Heidelberg (2006)
  • 13
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21, 697-700 (2003)
    • (2003) Nature Biotechnology , vol.21 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 14
    • 33847129641 scopus 로고    scopus 로고
    • Gene network interconnectedness and the generalized topological overlap measure
    • Yip, A.M., Horvath, S.: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8, 22 (2007)
    • (2007) BMC Bioinformatics , vol.8 , pp. 22
    • Yip, A.M.1    Horvath, S.2
  • 15
    • 1842580761 scopus 로고    scopus 로고
    • Functional and topological characterization of protein interaction networks
    • Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928-942 (2004)
    • (2004) Proteomics , vol.4 , pp. 928-942
    • Yook, S.H.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 16
    • 1942484430 scopus 로고    scopus 로고
    • Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proc. of 20th International Conference on Machine Learning, ICML 2003, pp. 912-919 (2003)
    • Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proc. of 20th International Conference on Machine Learning, ICML 2003, pp. 912-919 (2003)
  • 17
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison
    • Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison (2005)
    • (2005)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.