메뉴 건너뛰기




Volumn 3, Issue 4, 2009, Pages

Fast likelihood search for hidden Markov models

Author keywords

Hidden Markov model; Likelihood; Upper bound

Indexed keywords

ANOMALY DETECTION; BEST MODEL; BIOLOGICAL ANALYSIS; DATA SETS; EFFICIENT MONITORING; FAST SEARCH METHOD; LIKELIHOOD; LIKELIHOOD COMPUTATION; MENTAL TASK CLASSIFICATION; QUERY SEQUENCE; STATE SEQUENCES; STREAMING DATA; TRAFFIC MONITORING; UPPER BOUND;

EID: 72449122835     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1631162.1631166     Document Type: Article
Times cited : (5)

References (59)
  • 2
    • 85006228721 scopus 로고
    • Efficient similarity search in sequence databases
    • Proceedings of the International Conference on Foundations of Data Organization and Algorithms (FODO), Springer-Verlag, Berlin, Germany
    • AGRAWAL, R., FALOUTSOS, C., AND SWAMI, A. N. 1993. Efficient similarity search in sequence databases. In Proceedings of the International Conference on Foundations of Data Organization and Algorithms (FODO). Lecture Notes in Computer Science, vol.730, Springer-Verlag, Berlin, Germany, 69-84.
    • (1993) Lecture Notes in Computer Science , vol.730 , pp. 69-84
    • Agrawal, R.1    Faloutsos, C.2    Swami, A.N.3
  • 5
    • 1142267347 scopus 로고    scopus 로고
    • Chain: Operator scheduling for memory minimization in data stream systems
    • ACM, New York
    • BABCOCK, B., BABU, S., DATAR, M., AND MOTWANI, R. 2003. Chain: Operator scheduling for memory minimization in data stream systems. In Proceedings of the SIGMOD Conference. ACM, New York, 253-264.
    • (2003) Proceedings of the SIGMOD Conference , pp. 253-264
    • Babcock, B.1    Babu, S.2    Datar, M.3    Motwani, R.4
  • 6
  • 7
    • 0142253852 scopus 로고    scopus 로고
    • Adam: A testbed for exploring the use of data mining in intrusion detection
    • BARBARA, D., COUTO, J., JAJODIA, S., AND WU, N. 2001. Adam: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Record 30, 4, 15-24.
    • (2001) SIGMOD Record , vol.30 , Issue.4 , pp. 15-24
    • Barbara, D.1    Couto, J.2    Jajodia, S.3    Wu, N.4
  • 17
    • 28444450448 scopus 로고    scopus 로고
    • Exploiting correlated attributes in acquisitional query processing
    • DESHPANDE, A., GUESTRIN, C., HONG, W., AND MADDEN, S. 2005. Exploiting correlated attributes in acquisitional query processing. In ICDE. 143-154.
    • (2005) ICDE , pp. 143-154
    • Deshpande, A.1    Guestrin, C.2    Hong, W.3    Madden, S.4
  • 19
    • 0000873031 scopus 로고    scopus 로고
    • Hidden Markov model based continuous online gesture recognition
    • EICKELER, S., KOSMALA, A., AND RIGOLL, G. 1998. Hidden Markov model based continuous online gesture recognition. In ICPR. 1206-1208.
    • (1998) ICPR , pp. 1206-1208
    • Eickeler, S.1    Kosmala, A.2    Rigoll, G.3
  • 20
    • 34547968562 scopus 로고    scopus 로고
    • Carpediem: An algorithm for the fast evaluation of SSL classifiers
    • ESPOSITO, R. AND RADICIONI, D. P. 2007. Carpediem: An algorithm for the fast evaluation of SSL classifiers. In ICML. 257-264.
    • (2007) ICML , pp. 257-264
    • Esposito, R.1    Radicioni, D.P.2
  • 22
    • 65449116939 scopus 로고    scopus 로고
    • Spiral: Efficient and exact model identification for hidden Markov models
    • FUJIWARA, Y., SAKURAI, Y., AND YAMAMURO,M. 2008. Spiral: Efficient and exact model identification for hidden Markov models. In KDD. 247-255.
    • (2008) KDD , pp. 247-255
    • Fujiwara, Y.1    Sakurai, Y.2    Yamamuro, M.3
  • 23
    • 0033097333 scopus 로고    scopus 로고
    • State-based Gaussian selection in large vocabulary continuous speech recognition using HMMS
    • GALES, M., KNILL, K., AND YOUNG, S. 1999. State-based Gaussian selection in large vocabulary continuous speech recognition using HMMS. In TSAP. 152-161.
    • (1999) TSAP , pp. 152-161
    • Gales, M.1    Knill, K.2    Young, S.3
  • 24
    • 0033907355 scopus 로고    scopus 로고
    • Demon: Mining and monitoring evolving data
    • GANTI, V., GEHRKE, J., AND RAMAKRISHNAN, R. 2000. Demon: Mining and monitoring evolving data. In ICDE. 439-448.
    • (2000) ICDE , pp. 439-448
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3
  • 25
    • 27644594620 scopus 로고    scopus 로고
    • Continuous similarity-based queries on streaming time series
    • GAO, L. AND WANG, X. S. 2005. Continuous similarity-based queries on streaming time series. IEEE Trans. Knowl. Data Eng. 17, 10, 1320-1332.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.10 , pp. 1320-1332
    • Gao, L.1    Wang, X.S.2
  • 26
    • 0038969999 scopus 로고    scopus 로고
    • On computing correlated aggregates over continual data streams
    • ACM, New York
    • GEHRKE, J., KORN, F., AND SRIVASTAVA, D. 2001. On computing correlated aggregates over continual data streams. In Proceedings of the SIGMOD Conference. ACM, New York, 13-24.
    • (2001) Proceedings of the SIGMOD Conference , pp. 13-24
    • Gehrke, J.1    Korn, F.2    Srivastava, D.3
  • 27
    • 84968924443 scopus 로고
    • Protein modeling using hidden Markov models: Analysis of globins
    • HAUSSLER, D., KROGH, A., MIAN, I. S., AND SJOLANDER, K. 1993. Protein modeling using hidden Markov models: Analysis of globins. In HICSS 39. 792-802.
    • (1993) HICSS , vol.39 , pp. 792-802
    • Haussler, D.1    Krogh, A.2    Mian, I.S.3    Sjolander, K.4
  • 30
    • 20444398506 scopus 로고    scopus 로고
    • Joint scene classification and segmentation based on Hidden Markov Model
    • DOI 10.1109/TMM.2005.843346
    • HUANG, J., LIU, Z., ANDWANG, Y. 2005. Joint scene classification and segmentation based on hidden markov model. IEEE Trans. Multimed. 7, 3, 538-550. (Pubitemid 40795052)
    • (2005) IEEE Transactions on Multimedia , vol.7 , Issue.3 , pp. 538-550
    • Huang, J.1    Liu, Z.2    Wang, Y.3
  • 31
    • 0024905238 scopus 로고
    • A comparison of several acoustic representations for speech recognition with degraded and undegraded speech
    • IEEE Computer Society Press, Los Alamitos, CA
    • HUNT, M. AND LEFEBVRE, C. 1989. A comparison of several acoustic representations for speech recognition with degraded and undegraded speech. In Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP). IEEE Computer Society Press, Los Alamitos, CA, 262-265.
    • (1989) Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP) , pp. 262-265
    • Hunt, M.1    Lefebvre, C.2
  • 33
    • 85116610435 scopus 로고    scopus 로고
    • Next century challenges: Mobile networking for "smart dust"
    • KAHN, J. M., KATZ, R. H., AND PISTER, K. S. J. 1999. Next century challenges: Mobile networking for "smart dust". In Proceedings of MOBICOM. 271-278.
    • (1999) Proceedings of MOBICOM , pp. 271-278
    • Kahn, J.M.1    Katz, R.H.2    Pister, K.S.J.3
  • 38
    • 72449132093 scopus 로고    scopus 로고
    • Rival penalized competitive learning for model-based sequence clustering
    • LAW,M.H. C. ANDKWOK, J. T. 2000. Rival penalized competitive learning for model-based sequence clustering. In ICPR. 2195-2198.
    • (2000) ICPR , pp. 2195-2198
    • Law, M.H.C.1    Kwok, J.T.2
  • 39
    • 0020734214 scopus 로고
    • An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition
    • LEVINSON, S. E., RABINER, L. R., AND SONDHI, M. M. 1982. An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition. Bell Syst. Tech. J. 62, 1035-1074.
    • (1982) Bell Syst. Tech. J. , vol.62 , pp. 1035-1074
    • Levinson, S.E.1    Rabiner, L.R.2    Sondhi, M.M.3
  • 41
    • 0001012402 scopus 로고    scopus 로고
    • A Bayesian approach to temporal data clustering using hidden markov models
    • LI, C. AND BISWAS,G. 2000. A Bayesian approach to temporal data clustering using hidden markov models. In ICML. 543-550.
    • (2000) ICML , pp. 543-550
    • Li, C.1    Biswas, G.2
  • 42
    • 0036372483 scopus 로고    scopus 로고
    • General match: A subsequence matching method in time-series databases based on generalized windows
    • ACM, New York
    • MOON, Y.-S.,WHANG, K.-Y., ANDHAN,W.-S. 2002. General match: A subsequence matching method in time-series databases based on generalized windows. In Proceedings of the SIGMOD Conference. ACM, New York, 382-393.
    • (2002) Proceedings of the SIGMOD Conference , pp. 382-393
    • Moon, Y.-S.1    Whang, K.-Y.2    Han, W.-S.3
  • 45
    • 0026818496 scopus 로고
    • Data driven search organization for continuous speech recognition
    • NEY, H., MERGEL, D., NOLL, A., AND PAESLER, A. 1992. Data driven search organization for continuous speech recognition. IEEE Trans. Signal Processing. 40, 2, 272-281.
    • (1992) IEEE Trans. Signal Processing , vol.40 , Issue.2 , pp. 272-281
    • Ney, H.1    Mergel, D.2    Noll, A.3    Paesler, A.4
  • 46
    • 85024883227 scopus 로고    scopus 로고
    • Electroencephalogram processing using hidden markov models
    • NOVAK, D., T. AL-ANI, Y. H., AND LHOTSKA, L. 2004. Electroencephalogram processing using hidden markov models. In EUROSIM.
    • (2004) EUROSIM
    • Novak, D.1    Al-Ani Y H, T.2    Lhotska, L.3
  • 47
    • 0028260448 scopus 로고
    • Differentiation between finger, toe and tongue movement in man based on 40 hz EEG
    • PFURTSCHELLER, G., FLOTZINGER, D., AND NEUPER, C. 1994. Differentiation between finger, toe and tongue movement in man based on 40 hz EEG. Electroencephalog. Clin. Neurophysiol. 90, 6, 456-460.
    • (1994) Electroencephalog. Clin. Neurophysiol. , vol.90 , Issue.6 , pp. 456-460
    • Pfurtscheller, G.1    Flotzinger, D.2    Neuper, C.3
  • 48
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • RABINER, L. R. AND JUANG, B. H. 1986. An introduction to hidden markov models. IEEE ASSP Magazine 3, 4-16.
    • (1986) IEEE ASSP Magazine , vol.3 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.H.2
  • 50
    • 31844438616 scopus 로고    scopus 로고
    • Fast inference and learning in large-state-space hmms
    • SIDDIQI, S. M. AND MOORE, A. W. 2005. Fast inference and learning in large-state-space hmms. In ICML. 800-807.
    • (2005) ICML , pp. 800-807
    • Siddiqi, S.M.1    Moore, A.W.2
  • 51
    • 85153965130 scopus 로고
    • Reinforcement learning with soft state aggregation
    • SINGH, S. P., JAAKKOLA, T., AND JORDAN, M. I. 1994. Reinforcement learning with soft state aggregation. In NIPS. 361-368.
    • (1994) NIPS , pp. 361-368
    • Singh, S.P.1    Jaakkola, T.2    Jordan, M.I.3
  • 52
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden markov models
    • SMYTH, P. 1996. Clustering sequences with hidden markov models. In NIPS. 648-654.
    • (1996) NIPS , pp. 648-654
    • Smyth, P.1
  • 56
    • 0031675839 scopus 로고    scopus 로고
    • Efficient retrieval of similar time sequences under time warping
    • YI, B.-K., JAGADISH, H. V., AND FALOUTSOS, C. 1998. Efficient retrieval of similar time sequences under time warping. In Proceedings of the ICDE. 201-208.
    • (1998) Proceedings of the ICDE , pp. 201-208
    • Yi, B.-K.1    Jagadish, H.V.2    Faloutsos, C.3
  • 57
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • ACM, New York
    • ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996. Birch: An efficient data clustering method for very large databases. In Proceedings of the SIGMOD Conference. ACM, New York, 103-114.
    • (1996) Proceedings of the SIGMOD Conference , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 58
  • 59
    • 0141637082 scopus 로고    scopus 로고
    • Statstream: Statistical monitoring of thousands of data streams in real time
    • ACM, New York
    • ZHU, Y. AND SHASHA, D. 2002. Statstream: Statistical monitoring of thousands of data streams in real time. In Proceedings of the Conference on Very Large Databases (VLDB). ACM, New York, 358-369.
    • (2002) Proceedings of the Conference on Very Large Databases (VLDB) , pp. 358-369
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.