메뉴 건너뛰기




Volumn 11, Issue 6, 2000, Pages 1394-1401

Neural discriminant analysis

Author keywords

Bias correction; Binary data; Bootstrap methods; Cross entropy; Goodness of flt test; Residual analysis

Indexed keywords


EID: 7244237770     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.883460     Document Type: Article
Times cited : (8)

References (26)
  • 1
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White, "Learning in artificial neural networks: A statistical perspective," Neural Comput., vol. 1, pp. 425-464, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 2
    • 33747716026 scopus 로고
    • Maximum likelihood training of neural networks
    • D. J. Hand, Ed. London, U.K.: Chapman & Hall
    • H. Gish, "Maximum likelihood training of neural networks," in Artificial Intelligence Frontiers in Statistics, D. J. Hand, Ed. London, U.K.: Chapman & Hall, 1993, pp. 241-255.
    • (1993) Artificial Intelligence Frontiers in Statistics , pp. 241-255
    • Gish, H.1
  • 3
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • ser. B
    • B.D. Ripley, "Neural networks and related methods for classification," J. Roy. Statist. Soc., ser. B, vol. 56, pp. 409-456, 1994.
    • (1994) J. Roy. Statist. Soc. , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 5
    • 0029252699 scopus 로고
    • On the probabilistic interpretation of neural network classifiers and discriminative training criteria
    • H. Ney, "On the probabilistic interpretation of neural network classifiers and discriminative training criteria," IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp. 107-119, 1995.
    • (1995) IEEE Trans. Pattern Anal. Machine Intell. , vol.17 , pp. 107-119
    • Ney, H.1
  • 6
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • J. D. Paola and R. A. Schowengerdt, "A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification," IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 981-996, 1995.
    • (1995) IEEE Trans. Geosci. Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 7
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov, F. Caski, and A. Kiado, Eds., Budapest
    • H. Akaike, "Information theory and an extension of the maximum likelihood principle," in 2nd Int. Symp. Inform. Theory, B. N. Petrov, F. Caski, and A. Kiado, Eds., Budapest, 1973, pp. 267-281.
    • (1973) 2nd Int. Symp. Inform. Theory , pp. 267-281
    • Akaike, H.1
  • 8
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for artificial neural network models
    • N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion - Determining the number of hidden units for artificial neural network models," IEEE Trans. Neural Networks, vol. 5, pp. 865-872, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 9
    • 9844236466 scopus 로고    scopus 로고
    • Bootstrapping log likelihood and EIC, an extension of AIC
    • M. Ishiguro, Y. Sakamoto, and G. Kitagawa, "Bootstrapping log likelihood and EIC, an extension of AIC," Ann. Inst. Statist. Math., vol. 49, pp. 411-434, 1997.
    • (1997) Ann. Inst. Statist. Math. , vol.49 , pp. 411-434
    • Ishiguro, M.1    Sakamoto, Y.2    Kitagawa, G.3
  • 12
    • 84950447902 scopus 로고
    • Graphical methods for assessing logistic regression models
    • J. M. Landwehr, D. Pregibon, and A. C. Shoemaker, "Graphical methods for assessing logistic regression models," J. Amer. Statist. Assoc., vol. 79, pp. 61-71, 1984.
    • (1984) J. Amer. Statist. Assoc. , vol.79 , pp. 61-71
    • Landwehr, J.M.1    Pregibon, D.2    Shoemaker, A.C.3
  • 13
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • B. Efron, "Estimating the error rate of a prediction rule: Improvement on cross-validation," J. Amer. Statist. Assoc., vol. 78, pp. 316-331, 1983.
    • (1983) J. Amer. Statist. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 14
    • 0001552995 scopus 로고
    • Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression
    • G. Gong, "Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression," J. Amer. Statist. Assoc., vol. 81, pp. 108-113, 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 108-113
    • Gong, G.1
  • 15
    • 38249038727 scopus 로고
    • Resampling procedures for reducing bias or error rate estimation in multinomial classification
    • M.-C. Wang, "Resampling procedures for reducing bias or error rate estimation in multinomial classification," Comput. Statist. Data Anal., vol. 4, pp. 15-39, 1986.
    • (1986) Comput. Statist. Data Anal. , vol.4 , pp. 15-39
    • Wang, M.-C.1
  • 16
    • 1642567826 scopus 로고
    • Comparison of procedures for estimation of error rates in discriminant analysis under nonnormal populations
    • S. Konishi and M. Honda, "Comparison of procedures for estimation of error rates in discriminant analysis under nonnormal populations," J. Statist. Comp. Simul., vol. 36, pp. 105-115, 1990.
    • (1990) J. Statist. Comp. Simul. , vol.36 , pp. 105-115
    • Konishi, S.1    Honda, M.2
  • 17
    • 0007208728 scopus 로고
    • Outliers and residual distributions in logistic regression
    • D. E. Jennings, "Outliers and residual distributions in logistic regression," J. Amer. Statist. Assoc., vol. 81, pp. 987-990, 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 987-990
    • Jennings, D.E.1
  • 19
    • 0001770345 scopus 로고
    • Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function
    • J. B. Hampshire and B. A. Pelmutter, "Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function," in Proc. 1990 Connectionist Models Summer School, 1990, pp. 159-172.
    • (1990) Proc. 1990 Connectionist Models Summer School , pp. 159-172
    • Hampshire, J.B.1    Pelmutter, B.A.2
  • 20
    • 0024732792 scopus 로고
    • Connectionist learning procedure
    • G. E. Hinton, "Connectionist learning procedure, "Artificial Intell., vol. 40, pp. 185-234, 1989.
    • (1989) Artificial Intell. , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 21
    • 0001041635 scopus 로고
    • Learning algorithms and probability distributions in feedforward and feedback networks
    • J. J. Hopfield, "Learning algorithms and probability distributions in feedforward and feedback networks," in Proc. Nat. Academy Sci., 1987, pp. 8429-8433.
    • (1987) Proc. Nat. Academy Sci. , pp. 8429-8433
    • Hopfield, J.J.1
  • 22
    • 0001336749 scopus 로고
    • Accelerated learning in layered neural networks
    • S. A. Solla, E. Levin, and M. Fleisher, "Accelerated learning in layered neural networks," Complex Syst., vol. 2, pp. 625-640, 1988.
    • (1988) Complex Syst. , vol.2 , pp. 625-640
    • Solla, S.A.1    Levin, E.2    Fleisher, M.3
  • 23
    • 0026711368 scopus 로고
    • Improving the convergence of backpropagation algorithm
    • A. V. Ooyen and B. Nienhuis, "Improving the convergence of backpropagation algorithm," Neural Networks, vol. 5, pp. 465-471, 1992.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Ooyen, A.V.1    Nienhuis, B.2
  • 24
    • 0001572432 scopus 로고    scopus 로고
    • A comparison of some error estimates for neural network models
    • R. Tibshirani, "A comparison of some error estimates for neural network models," Neural Comput., vol. 8, pp. 152-163, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 152-163
    • Tibshirani, R.1
  • 25
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • G. J. MacLachlan, "On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture," Appl. Statist., vol. 36, pp. 318-324, 1987.
    • (1987) Appl. Statist. , vol.36 , pp. 318-324
    • MacLachlan, G.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.