-
5
-
-
0025598005
-
-
L. Wang, E. E. Pichler, and J. Ross, Proc. Natl. Acad. Sci. U.S.A. 87, 9467 (1990); L. Wang and J. Ross, Phys. Rev. A 44, 2259 (1991).
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 9467
-
-
Wang, L.1
Pichler, E.E.2
Ross, J.3
-
6
-
-
7444240211
-
-
L. Wang, E. E. Pichler, and J. Ross, Proc. Natl. Acad. Sci. U.S.A. 87, 9467 (1990); L. Wang and J. Ross, Phys. Rev. A 44, 2259 (1991).
-
(1991)
Phys. Rev. A
, vol.44
, pp. 2259
-
-
Wang, L.1
Ross, J.2
-
8
-
-
0033180639
-
-
D. Caroppo, M. Mannarelli, G. Nardulli, and S. Stramaglia, Phys. Rev. E 60, 2186 (1999).
-
(1999)
Phys. Rev. E
, vol.60
, pp. 2186
-
-
Caroppo, D.1
Mannarelli, M.2
Nardulli, G.3
Stramaglia, S.4
-
15
-
-
0026626764
-
-
I. Tsuda, Neural Networks 5, 313 (1992); K. Kaneko and I. Tsuda, Complex Systems: Chaos and Beyond (Springer, Berlin, 2001).
-
(1992)
Neural Networks
, vol.5
, pp. 313
-
-
Tsuda, I.1
-
18
-
-
0012446651
-
-
S. Nara, P. Davis, M. Kawachi, and H. Totsuji, Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 1205 (1995).
-
(1995)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.5
, pp. 1205
-
-
Nara, S.1
Davis, P.2
Kawachi, M.3
Totsuji, H.4
-
25
-
-
0141455111
-
FOCUS ISSUE: Chaotic itinerancy
-
"FOCUS ISSUE: Chaotic Itinerancy," edited by K. Kaneko and I. Tsuda, Chaos 13, 926 (2003).
-
(2003)
Chaos
, vol.13
, pp. 926
-
-
Kaneko, K.1
Tsuda, I.2
-
26
-
-
4244216476
-
-
D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Lett. 55, 1530 (1985); Ann. Phys. (N.Y.) 173, 30 (1987).
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 1530
-
-
Amit, D.J.1
Gutfreund, H.2
Sompolinsky, H.3
-
27
-
-
4244216476
-
-
D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Lett. 55, 1530 (1985); Ann. Phys. (N.Y.) 173, 30 (1987).
-
(1987)
Ann. Phys. (N.Y.)
, vol.173
, pp. 30
-
-
-
28
-
-
0003888025
-
-
Cambridge University Press, Cambridge, England
-
D. J. Amit, Modeling Brain Functions (Cambridge University Press, Cambridge, England, 1989).
-
(1989)
Modeling Brain Functions
-
-
Amit, D.J.1
-
34
-
-
0003582543
-
-
Cambridge University Press, Cambridge, England
-
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1994).
-
(1994)
Chaos in Dynamical Systems
-
-
Ott, E.1
-
36
-
-
84958272576
-
-
note
-
Note that these two couplings are the same when we consider storing p orthogonal random patterns (fully uncorrelated patterns) because A [Eq. (7)] reduces to a unit matrix at that time.
-
-
-
-
37
-
-
84958272577
-
-
note
-
1|at the retrieval-nonretrieval transition point) is improved, and furthermore, (iii) the basin of attraction of the stored patterns get much deeper, while the extent of a basin becomes infinitesimal near the retrieval-nonretrieval transition boundary (Refs. 45-47).
-
-
-
-
38
-
-
84958272578
-
-
note
-
In contrast to the result of Ref. 27, we did not come across the numerical observation of the sinusoidally oscillating retrieval solutions with the oscillation amplitude greater than 0.01. The bifurcation theory tells us the existence of the sinusoidal solution parameterized between the fixed-point-type retrieval and the chaotic retrieval solutions. However, we stored a number of correlated patterns with the help of the pseudoinverse method. That must negatively work upon the appearance.
-
-
-
-
39
-
-
84958272579
-
-
note
-
z∼ 11.2∼0.2 as a rough estimation.
-
-
-
-
40
-
-
84958272580
-
-
note
-
2 for CI, which is necessarily blurred by the finite size effect of N, is expected to be most easily done in the case of α≃0.02. If one chooses α slightly larger than 0.02, the corresponding bifurcation diagram would result in more blurred one.
-
-
-
-
41
-
-
84958272581
-
-
note
-
2≤2.5. One run and 2000≤t≤5000 for the nonretrieval solutions. Here its ergodicity is realized in shorter time scale.
-
-
-
-
42
-
-
84958272582
-
-
note
-
2 on the sth layer.)
-
-
-
-
46
-
-
84958272583
-
-
note
-
N) as well as the (pre-destabilized) attractor does contain it. Thus, the basin size is always larger than the size of an attractor ruin.
-
-
-
-
47
-
-
84958272584
-
-
note
-
The appearance of the chaotic retrieval solutions has been numerically reported also in the study of the auto-associative oscillator neural networks accompanied with asymmetric distributions of native frequencies (Ref. 48). This system, which is described with coupled differential equations, seems to be mathematically tractable. So future studies on it will attract much attention.
-
-
-
-
52
-
-
84958272585
-
-
note
-
See EPAPS Document No. E-CHAOEH-14-041403 for movies of the retrieval solutions and images of stored patterns. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory/epaps/. See the EPAPS homepage for more information.
-
-
-
|