메뉴 건너뛰기




Volumn 19, Issue 3, 2009, Pages 29-39

Coupled systems of nonlinear fractional differential equations with nonlocal boundary conditions

Author keywords

Caputo fractional derivative; Coupled system; Existence; Fractional differential equations; Nonlocal boundary conditions; Schauder fixed point theorem

Indexed keywords


EID: 72349091049     PISSN: 10649735     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (21)

References (17)
  • 1
    • 1242321329 scopus 로고    scopus 로고
    • The existence of a positive soluation for a singiler coupled system of nonlinear fractional differential equations
    • C. Bai, J. Fang, The existence of a positive soluation for a singiler coupled system of nonlinear fractional differential equations, Appl. Math. Comput. 150 (2004) 611-621.
    • (2004) Appl. Math. Comput , vol.150 , pp. 611-621
    • Bai, C.1    Fang, J.2
  • 2
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Z. Bai, H. Lü, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005) 495-505. (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 3
    • 43049157795 scopus 로고    scopus 로고
    • Numerical solutions of coupled burger equations with time and space fractional derivatives
    • in press
    • Y. Chen, H. An, Numerical solutions of coupled Burger equations with time and space fractional derivatives, Appl. Math. Comput., in press.
    • Appl. Math. Comput.
    • Chen, Y.1    An, H.2
  • 4
    • 0000297319 scopus 로고
    • Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions
    • K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993) 630-637.
    • (1993) J. Math. Anal. Appl. , vol.179 , pp. 630-637
    • Deng, K.1
  • 5
    • 18844427587 scopus 로고    scopus 로고
    • Chaos synchronization of the fractional lü system
    • W. Deng, C. Li, Chaos synchronization of the fractional Lü system, Phys. A 353 (2005) 61-72.
    • (2005) Phys. , vol.A 353 , pp. 61-72
    • Deng, W.1    Li, C.2
  • 6
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solution
    • K. Diethelm, N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154 (2004) 621-640.
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 7
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity
    • F. Keil, W. Mackens, H. Vob, J. Werther (Eds.), Reaction Engineering, and Molecular Properties, Springer, Heidelberg
    • K. Diethelm, A. D. Freed, On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Vob, J. Werther (Eds.), Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, Springer, Heidelberg, 1999, pp. 217-224.
    • (1999) Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 8
  • 9
    • 10844262723 scopus 로고    scopus 로고
    • Positive solutions of a system of non-autonomous fractional differential equations
    • V. D. Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl. 302 (2005) 56-64.
    • (2005) J. Math. Anal. Appl. , vol.302 , pp. 56-64
    • Gejji, V.D.1
  • 10
    • 2442548776 scopus 로고    scopus 로고
    • Analysis of a system of fractional differential equations
    • V. D. Gejji, A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl. 293 (2004) 511-522.
    • (2004) J. Math. Anal. Appl. , vol.293 , pp. 511-522
    • Gejji, V.D.1    Babakhani, A.2
  • 13
    • 27744589296 scopus 로고    scopus 로고
    • Finite time stability analysis of PDα fractional control of robotic time -delay systems
    • M. P. Lazarević, Finite time stability analysis of PDα fractional control of robotic time -delay systems, Mech. Res. Comm. 33 (2006) 269-279.
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarević, M.P.1
  • 17
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett. 22 (2009), 64-69.
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.