메뉴 건너뛰기




Volumn , Issue , 2009, Pages 55-60

Incremental EM for Probabilistic Latent Semantic Analysis on human action recognition

Author keywords

Incremental EM; PLSA

Indexed keywords

ACTION RECOGNITION; AUTOMATIC UNDERSTANDING; DATA SETS; EM ALGORITHMS; EM TRAINING; EXPECTATION-MAXIMIZATION ALGORITHMS; HUMAN ACTIONS; HUMAN-ACTION RECOGNITION; INCREMENTAL EM; ITERATIVE ESTIMATION; LIKELIHOOD FUNCTIONS; LOCAL MAXIMUM; NUMBER OF ITERATIONS; PLSA MODEL; PROBABILISTIC LATENT SEMANTIC ANALYSIS; RECOGNITION ACCURACY; SPEED-UPS; TRAINING DATA; TRAINING TIME; VIDEO SURVEILLANCE;

EID: 72349086409     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AVSS.2009.66     Document Type: Conference Paper
Times cited : (10)

References (15)
  • 1
    • 33745891801 scopus 로고    scopus 로고
    • M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as Space-Time Shapes. In In Proceedings of the tenth IEEE International Conference on Computer Vision, 2, 2005.
    • M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as Space-Time Shapes. In In Proceedings of the tenth IEEE International Conference on Computer Vision, volume 2, 2005.
  • 2
    • 72349096736 scopus 로고    scopus 로고
    • J. Carlos Niebles, H. Wang, and F.-F. Li. Unsupervsied Learning of Human Action Categories Using Spatial-Temporal Words. Internationl Journal on Computer Vision, 42(1):993-1022, 2008.
    • J. Carlos Niebles, H. Wang, and F.-F. Li. Unsupervsied Learning of Human Action Categories Using Spatial-Temporal Words. Internationl Journal on Computer Vision, 42(1):993-1022, 2008.
  • 4
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • P. Dollär, R. Vincent, and C. Garrison. Behavior recognition via sparse spatio-temporal features. In VS-PETS, pages 65-72, 2005.
    • (2005) VS-PETS , pp. 65-72
    • Dollär, P.1    Vincent, R.2    Garrison, C.3
  • 5
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised Learning by Probabilistic Latent Semantic Analysis
    • T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, 42(1):177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 6
    • 34948857983 scopus 로고    scopus 로고
    • N. Ikizler and D. Forsyth. Searching Video for Complex Activities with Finite State Models. In In Proceedings of the tenth IEEE International Conference on Computer Vision, 3, 2007.
    • N. Ikizler and D. Forsyth. Searching Video for Complex Activities with Finite State Models. In In Proceedings of the tenth IEEE International Conference on Computer Vision, volume 3, 2007.
  • 11
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models, pages 355-368, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 12
  • 13
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In ICPR, pages 32-36, 2004.
    • (2004) ICPR , pp. 32-36
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 14
    • 33644522380 scopus 로고    scopus 로고
    • Beyond tracking: Modelling activity and understanding behaviour
    • T. Xiang and S. Gong. Beyond tracking: Modelling activity and understanding behaviour. International Journal of Computer Vision, 67(1):21-51, 2006.
    • (2006) International Journal of Computer Vision , vol.67 , Issue.1 , pp. 21-51
    • Xiang, T.1    Gong, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.