-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-theart and possible extensions
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-theart and possible extensions. IEEE Transaction on Knowledge and Data Engineering, 17(6), 2005.
-
(2005)
IEEE Transaction on Knowledge and Data Engineering
, vol.17
, Issue.6
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
0031379881
-
Feature-based and clique-based user models for movie selection: A comparative study
-
J. Alspector, A. Kolcz and N. Karunanithi. Feature-based and clique-based user models for movie selection: A comparative study. User Modeling and User-Adapted Interaction, 7(4): 279-304, 1997.
-
(1997)
User Modeling and User-Adapted Interaction
, vol.7
, Issue.4
, pp. 279-304
-
-
Alspector, J.1
Kolcz, A.2
Karunanithi, N.3
-
6
-
-
72249100346
-
-
R. Bell, Y. Koren, and C. Volinsky. Chasing $1,000,000: How we won the netflix progress prize. Statistical Computing and Statistical Graphics Newsletter, 18(2):4-12, 2007.
-
R. Bell, Y. Koren, and C. Volinsky. Chasing $1,000,000: How we won the netflix progress prize. Statistical Computing and Statistical Graphics Newsletter, 18(2):4-12, 2007.
-
-
-
-
8
-
-
0030196364
-
Stacked regressions
-
L. Breiman. Stacked regressions. Machine Learning, 24:49-64, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 49-64
-
-
Breiman, L.1
-
9
-
-
0036959356
-
Hybrid recommender systems: Survey and experiments
-
November
-
R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331-370, November 2002.
-
(2002)
User Modeling and User-Adapted Interaction
, vol.12
, Issue.4
, pp. 331-370
-
-
Burke, R.1
-
10
-
-
20844448296
-
Combining content-based and collaborative filters in an online newspaper
-
August
-
M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining content-based and collaborative filters in an online newspaper. In Proceedings of the ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation, August 1999.
-
(1999)
Proceedings of the ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation
-
-
Claypool, M.1
Gokhale, A.2
Miranda, T.3
Murnikov, P.4
Netes, D.5
Sartin, M.6
-
11
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3):255-273, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
13
-
-
85015559680
-
An algorithmic framework for performing collaborative filtering
-
J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In Proceedings of the 1999 Conference on Research and Development in Information Retrieval, pages 230-237, 1999.
-
(1999)
Proceedings of the 1999 Conference on Research and Development in Information Retrieval
, pp. 230-237
-
-
Herlocker, J.1
Konstan, J.2
Borchers, A.3
Riedl, J.4
-
14
-
-
84871047748
-
-
downloadable at, 2008
-
IMDb. Internet movie database. downloadable at http://www.imdb.com/ interfaces, 2008.
-
IMDb. Internet movie database
-
-
-
15
-
-
0031103122
-
Grouplens: Applying collaborative filtering to usenet news
-
J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl. Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM, 40(3):77-87, 1997.
-
(1997)
Communications of the ACM
, vol.40
, Issue.3
, pp. 77-87
-
-
Konstan, J.1
Miller, B.2
Maltz, D.3
Herlocker, J.4
Gordon, L.5
Riedl, J.6
-
18
-
-
72249101692
-
-
MovieLens. http://www.grouplens.org/node/73, 1997.
-
(1997)
MovieLens
-
-
-
19
-
-
84872255037
-
-
Netflix prize, http://www.netflixprize.com/.
-
Netflix prize
-
-
-
20
-
-
0033325071
-
A framework for collaborative, content-based, and demographic filtering
-
M. J. Pazzani. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 13(5-6):393-408, 1999.
-
(1999)
Artificial Intelligence Review
, vol.13
, Issue.5-6
, pp. 393-408
-
-
Pazzani, M.J.1
-
21
-
-
84911359802
-
Selecting and applying recommendation technology
-
M. Ramezani, L. Bergman, R. Thompson, R. Burke, and B. Mobasher. Selecting and applying recommendation technology. In IUI-08 Workshop on Recommendation and Collaboration (ReColl2008), 2008.
-
(2008)
IUI-08 Workshop on Recommendation and Collaboration (ReColl2008)
-
-
Ramezani, M.1
Bergman, L.2
Thompson, R.3
Burke, R.4
Mobasher, B.5
-
23
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International World Wide Web Conference, pages 285-295, 2001.
-
(2001)
Proceedings of the 10th International World Wide Web Conference
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
25
-
-
0003957032
-
-
2nd Edition. Morgan Kaufmann, San Francisco, CA, USA
-
I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco, CA, USA, 2005.
-
(2005)
Data Mining: Practical machine learning tools and techniques
-
-
Witten, I.H.1
Frank, E.2
-
26
-
-
0026692226
-
Stacked generalization
-
D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
|