-
3
-
-
0000865249
-
-
in, P. von-Rague Schleyer, Ed. Wiley, Chichester
-
D. Avnir, H. Zabrodsky Hel-Or, P. G. Mezey, in Encyclopedia of Computational Chemistry, P. von-Rague Schleyer, Ed. Wiley, Chichester, 1998, Vol. 4, p. 2890
-
(1998)
Encyclopedia of Computational Chemistry
, vol.4
, pp. 2890
-
-
Avnir, D.1
Hel-Or, H.Z.2
Mezey, P.G.3
-
4
-
-
0001965120
-
-
D. H. Rouvray, Ed., Research Studies Press Ltd., Taunton, Chap. 9
-
D. Avnir, O. Katzenelson, S. Keinan, M. Pinsky, Y. Pinto, Y. Salomon, H. Zabrodsky Hel-Or, in Concepts in Chemistry: A Contemporary Challenge, D. H. Rouvray, Ed., Research Studies Press Ltd., Taunton, 1997, Chap. 9, p. 283.
-
(1997)
Concepts in Chemistry: A Contemporary Challenge
, pp. 283
-
-
Avnir, D.1
Katzenelson, O.2
Keinan, S.3
Pinsky, M.4
Pinto, Y.5
Salomon, Y.6
Hel-Or, H.Z.I.7
-
5
-
-
0942300164
-
-
P. Holme, F. Liljeros, C. R. Edling, B. J. Kim, Phys. Rev. E 68 (2003) 056107.
-
(2003)
Phys. Rev. E
, vol.68
, pp. 056107
-
-
Holme, P.1
Liljeros, F.2
Edling, C.R.3
Kim, B.J.4
-
8
-
-
0000901534
-
-
D. R. Kanis, J. S Wong, T. J. Marks, M. A. Ratner, H. Zabrodsky, S. Keinan, D. Avnir, J. Phys. Chem. 99 (1995) 11061.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 11061
-
-
Kanis, D.R.1
Wong, J.S.2
Marks, T.J.3
Ratner, M.A.4
Zabrodsky, H.5
Keinan, S.6
Avnir, D.7
-
11
-
-
0001842992
-
-
S. Keinan, M. Pinsky, M. Plato, J. Edelstein, D. Avnir, Chem. Phys. Lett. 298 (1998) 43.
-
(1998)
Chem. Phys. Lett.
, vol.298
, pp. 43
-
-
Keinan, S.1
Pinsky, M.2
Plato, M.3
Edelstein, J.4
Avnir, D.5
-
15
-
-
1242336833
-
-
D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir, S. Alvarez, J. Am. Chem. Soc. 126 (2004) 1755.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 1755
-
-
Casanova, D.1
Cirera, J.2
Llunell, M.3
Alemany, P.4
Avnir, D.5
Alvarez, S.6
-
17
-
-
72149101972
-
-
hexagon in figures 1A and 1B due that the distance of two vertices which are not opposite to each other is changed, the center of gravity of the hexagon also changes. However, the present mathematical treatment requires that the center of gravity shall be retained. Thus, one should first move the distorted hexagon, so its center of gravity coincides with the center of gravity of the perfect hexagon, then one can calculate the distances. Equation 1 in the present study is correct only if both compared objects have the same center of gravity. Otherwise the obtained CSM will depend on the location of the investigated object
-
The hexagon in figures 1A and 1B due that the distance of two vertices which are not opposite to each other is changed, the center of gravity of the hexagon also changes. However, the present mathematical treatment requires that the center of gravity shall be retained. Thus, one should first move the distorted hexagon, so its center of gravity coincides with the center of gravity of the perfect hexagon, then one can calculate the distances. Equation (1) in the present study is correct only if both compared objects have the same center of gravity. Otherwise the obtained CSM will depend on the location of the investigated object.
-
-
-
-
18
-
-
72149133477
-
-
adjacency matrix is also know by chemists as the connectivity matrix A
-
ij = 1 if atoms i and j are directly connected to each other and zero in any other case.
-
-
-
-
26
-
-
0036001096
-
-
E. Besalú, X. Gironés, L. Amat, R. Carbó-Dorca, Acc. Chem. Res. 35 (2002) 289
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 289
-
-
Besalú, E.1
Gironés, X.2
Amat, L.3
Carbó-Dorca, R.4
|