메뉴 건너뛰기




Volumn 48, Issue 5, 2009, Pages 2945-2976

Maximum principles for optimal control of forward-backward stochastic differential equations with jumps

Author keywords

Convex risk measures; Forward backward stocha stic differential equations; Malliavin calculus; Maximum principle; Risk minimization; Stochastic optimal control

Indexed keywords

CONVEX RISK MEASURES; FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS; MALLIAVIN CALCULUS; MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL; NON-MARKOVIAN; OPTIMAL CONTROLS; PARTIAL INFORMATION; RISK MINIMIZATION; STOCHASTIC OPTIMAL CONTROL;

EID: 72149118497     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/080739781     Document Type: Article
Times cited : (99)

References (24)
  • 2
    • 34248358218 scopus 로고    scopus 로고
    • A maximum principle for stochastic control with partial information
    • F. BAGHERY AND B. ØKSENDAL, A maximum principle for stochastic control with partial information, Stoch. Anal. Appl., 25 (2007), pp. 705-717.
    • (2007) Stoch. Anal. Appl. , vol.25 , pp. 705-717
    • Baghery, F.1    Øksendal, B.2
  • 6
    • 0036016204 scopus 로고    scopus 로고
    • Filtration consistent nonlinear expectations and related g-expectations, Probab
    • F. COQUET, Y. HU, J. MÉMIN, and S. PENG, Filtration consistent nonlinear expectations and related g-expectations, Probab. Theory Related Fields, 123 (2002), pp. 1-27.
    • (2002) Theory Related Fields , vol.123 , pp. 1-27
    • Coquet, F.1    Hu, Y.2    Mémin, J.3    Peng, S.4
  • 8
    • 0031542653 scopus 로고    scopus 로고
    • Backward stochastic differential equations in finance
    • N. EL KAROUI, S. PENG, AND M.-C. QUENEZ, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), pp. 1-71. (Pubitemid 127342795)
    • (1997) Mathematical Finance , vol.7 , Issue.1 , pp. 1-71
    • Karoui, N.E.1    Peng, S.2    Quenez, M.C.3
  • 9
    • 4043087607 scopus 로고    scopus 로고
    • Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance
    • N. C. FRAMSTAD, B. ØKSENDAL, AND A. SULEM, Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance, J. Optim. Theory Appl., 121 (2004), pp. 77-98.
    • (2004) J. Optim. Theory Appl. , vol.121 , pp. 77-98
    • Framstad, N.C.1    Øksendal, B.2    Sulem, A.3
  • 11
    • 12444270722 scopus 로고    scopus 로고
    • Dynamic convex risk measures
    • G. Szegö ed., John Wiley & Sons, Hoboken, NJ
    • M. FRITTELLI AND E. ROSAZZA-GIANIN, Dynamic convex risk measures, In G. Szegö ed., Risk Measures in the 21st Century, John Wiley & Sons, Hoboken, NJ, (2004), pp. 227-248.
    • (2004) Risk Measures in the 21st Century , pp. 227-248
    • Frittelli, M.1    Rosazza-Gianin, E.2
  • 12
    • 0038551367 scopus 로고    scopus 로고
    • Convex measures of risk and trading constraints
    • H. FÖLLMER and A. SCHIED, Convex measures of risk and trading constraints, Finance & Stoch., 6 (2002), pp. 429-447.
    • (2002) Finance & Stoch. , vol.6 , pp. 429-447
    • Föllmer, H.1    Schied, A.2
  • 13
    • 0042175041 scopus 로고    scopus 로고
    • The cumulant process and Esscher's change of measure
    • J. KALLSEN AND A. SHIRYAEV, The cumulant process and Esscher's change of measure, Finance and Stoch., 6 (2002), pp. 397-428.
    • (2002) Finance and Stoch. , vol.6 , pp. 397-428
    • Kallsen, J.1    Shiryaev, A.2
  • 14
    • 0001283920 scopus 로고
    • A generalized clark representation formula, with application to optimal portfolios
    • Y. KARATZAS AND D. OCONE, A generalized Clark representation formula, with application to optimal portfolios, Stochastics Rep., 34 (1991), pp. 187-220.
    • (1991) Stochastics Rep. , vol.34 , pp. 187-220
    • Karatzas, Y.1    Ocone, D.2
  • 15
    • 47549092587 scopus 로고    scopus 로고
    • Risk minimizing portfolios and HJB equations for stochastic differential games
    • S. MATARAMVURA AND B. ØKSENDAL, Risk minimizing portfolios and HJB equations for stochastic differential games, Stochastics Rep., 80 (2008), pp. 317-337.
    • (2008) Stochastics Rep. , vol.80 , pp. 317-337
    • Mataramvura, S.1    Øksendal, B.2
  • 18
    • 72449151867 scopus 로고    scopus 로고
    • Risk indifference pricing in jump diffusion markets
    • Appear
    • B. ØKSENDAL AND A. SULEM, Risk indifference pricing in jump diffusion markets, Math. Finance, (to appear).
    • Math. Finance
    • Øksendal, B.1    Sulem, A.2
  • 21
    • 0038434600 scopus 로고    scopus 로고
    • Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order
    • L. Decreusefond et al. eds, Birkhäuser
    • E. PARDOUX, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, in L. Decreusefond et al. eds. Stochastic Analysis and related Topics VI, The Geilo Workshop, 1996, Birkhäuser 1998, pp. 79-127.
    • (1996) Stochastic Analysis and Related Topics VI, the Geilo Workshop , pp. 79-127
    • Pardoux, E.1
  • 22
    • 0032634560 scopus 로고    scopus 로고
    • Fully coupled forward-backward stochastic differential equations and applications to optimal control
    • S. PENG AND Z. WU, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), pp. 825-843.
    • (1999) SIAM J. Control Optim. , vol.37 , pp. 825-843
    • Peng, S.1    Wu, Z.2
  • 24
    • 37749016692 scopus 로고    scopus 로고
    • Maximum principle for fully coupled stochastic control system with random jumps
    • Zhangjiajie, Hunan, China
    • J. SHI AND Z. WU, Maximum principle for fully coupled stochastic control system with random jumps, in Proceedings of the 26th Chinese Control Conference, Zhangjiajie, Hunan, China, 2007, pp. 375-380.
    • (2007) Proceedings of the 26th Chinese Control Conference , pp. 375-380
    • Shi, J.1    Wu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.