메뉴 건너뛰기




Volumn , Issue , 2009, Pages

On the reliability of PCA for complex hyperspectral data

Author keywords

Eigenvalue; Eigenvector; Hyperspectral image; Principal component analysis; Sampling scheme

Indexed keywords

EIGEN-VALUE; EIGENVECTORS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE; SAMPLING SCHEMES;

EID: 72049131572     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WHISPERS.2009.5289076     Document Type: Conference Paper
Times cited : (4)

References (3)
  • 2
    • 72049091919 scopus 로고
    • Modeling and testing of a modular imaging spectrometer instrument
    • Feng, X., J. R. Schott, and T.W. Gallagher, "Modeling and testing of a modular imaging spectrometer instrument," Proc. SPIE, Vol. 2224, 215 (1994).
    • (1994) Proc. SPIE , vol.2224 , pp. 215
    • Feng, X.1    Schott, J.R.2    Gallagher, T.W.3
  • 3
    • 33751416345 scopus 로고    scopus 로고
    • Comparison and Usage of Principal Component Analysis (PCA) and Noise Adjusted Principal Component (NAPC) Analysis or Maximum Noise Fraction (MNF),
    • Technical Report, Rochester Institute of Technology
    • E.J.Ientilucci, "Comparison and Usage of Principal Component Analysis (PCA) and Noise Adjusted Principal Component (NAPC) Analysis or Maximum Noise Fraction (MNF)," Technical Report, Rochester Institute of Technology, 2003.
    • (2003)
    • Ientilucci, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.