메뉴 건너뛰기




Volumn 432, Issue 5, 2010, Pages 1218-1233

Detecting rigid convexity of bivariate polynomials

Author keywords

Convexity; Linear matrix inequality; Multivariate polynomials; Real algebraic geometry

Indexed keywords

ALGEBRAIC CURVES; BIVARIATE POLYNOMIALS; CONNECTED COMPONENT; EIGENVALUE DECOMPOSITION; MULTIVARIATE POLYNOMIAL; MULTIVARIATE POLYNOMIALS; OPTIMIZATION PROBLEMS; POLYNOMIAL MATRICES; RATIONAL PARAMETRIZATIONS; REAL ALGEBRAIC GEOMETRY; SUBLEVEL SET; SYMBOLIC-NUMERICAL ALGORITHMS; UNIVARIATE;

EID: 72049086693     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2009.10.033     Document Type: Article
Times cited : (18)

References (48)
  • 1
    • 0024107483 scopus 로고
    • Automatic parameterization of rational curves and surfaces. III: Algebraic plane curves
    • Abhyankar S.S., and Bajaj C.L. Automatic parameterization of rational curves and surfaces. III: Algebraic plane curves. Comput. Aided Geom. Design 5 (1988) 309-321
    • (1988) Comput. Aided Geom. Design , vol.5 , pp. 309-321
    • Abhyankar, S.S.1    Bajaj, C.L.2
  • 3
    • 0038729150 scopus 로고    scopus 로고
    • Determinantal hypersurfaces
    • Beauville A. Determinantal hypersurfaces. Michigan Math. J. 8 (2000) 39-64
    • (2000) Michigan Math. J. , vol.8 , pp. 39-64
    • Beauville, A.1
  • 4
    • 0034415996 scopus 로고    scopus 로고
    • The condition number of real Vandermonde, Krylov and positive definite Hankel matrices
    • Beckermann B. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. Math. 85 (2000) 553-577
    • (2000) Numer. Math. , vol.85 , pp. 553-577
    • Beckermann, B.1
  • 7
    • 34547221205 scopus 로고    scopus 로고
    • Determinantal representations of smooth cubic surfaces
    • Buckley A., and Košir T. Determinantal representations of smooth cubic surfaces. Geom. Dedicata 125 (2007) 115-140
    • (2007) Geom. Dedicata , vol.125 , pp. 115-140
    • Buckley, A.1    Košir, T.2
  • 8
    • 0022060394 scopus 로고
    • On polynomial matrix spectral factorization by symmetric extraction
    • Callier F.M. On polynomial matrix spectral factorization by symmetric extraction. IEEE Trans. Automat. Control 30 5 (1985) 453-464
    • (1985) IEEE Trans. Automat. Control , vol.30 , Issue.5 , pp. 453-464
    • Callier, F.M.1
  • 10
    • 55149115379 scopus 로고    scopus 로고
    • Computing the Abel map
    • Deconinck B., and Patterson M.S. Computing the Abel map. Phys. D 237 (2008) 3214-3232
    • (2008) Phys. D , vol.237 , pp. 3214-3232
    • Deconinck, B.1    Patterson, M.S.2
  • 11
    • 0035873576 scopus 로고    scopus 로고
    • Computing Riemann matrices of algebraic curves
    • Deconinck B., and van Hoeij M. Computing Riemann matrices of algebraic curves. Phys. D 152/153 (2001) 123-152
    • (2001) Phys. D , vol.152-153 , pp. 123-152
    • Deconinck, B.1    van Hoeij, M.2
  • 12
    • 0040005962 scopus 로고
    • Note on the reduction of a ternary quantic to a symmetrical determinant
    • Dixon A.C. Note on the reduction of a ternary quantic to a symmetrical determinant. Proc. Cambridge Philos. Soc. 11 (1902) 350-351
    • (1902) Proc. Cambridge Philos. Soc. , vol.11 , pp. 350-351
    • Dixon, A.C.1
  • 22
    • 33748484045 scopus 로고    scopus 로고
    • Noncommutative convexity arises from linear matrix inequalities
    • Helton J.W., McCullough S.A., and Vinnikov V. Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240 1 (2006) 105-191
    • (2006) J. Funct. Anal. , vol.240 , Issue.1 , pp. 105-191
    • Helton, J.W.1    McCullough, S.A.2    Vinnikov, V.3
  • 23
    • 34247216675 scopus 로고    scopus 로고
    • Linear matrix inequality representation of sets
    • Helton J.W., and Vinnikov V. Linear matrix inequality representation of sets. Comm. Pure Appl. Math. 60 5 (2007) 654-674
    • (2007) Comm. Pure Appl. Math. , vol.60 , Issue.5 , pp. 654-674
    • Helton, J.W.1    Vinnikov, V.2
  • 24
    • 70450210254 scopus 로고    scopus 로고
    • Sufficient and necessary conditions for semidefinite representability of convex hulls and sets
    • Helton J.W., and Nie J. Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20 2 (2009) 759-791
    • (2009) SIAM J. Optim. , vol.20 , Issue.2 , pp. 759-791
    • Helton, J.W.1    Nie, J.2
  • 25
    • 0032154772 scopus 로고    scopus 로고
    • An efficient numerical method for the discrete-time symmetric matrix polynomial equation
    • Henrion D., and Šebek M. An efficient numerical method for the discrete-time symmetric matrix polynomial equation. IEE Proc. Control Theory Appl. 145 5 (1998) 443-448
    • (1998) IEE Proc. Control Theory Appl. , vol.145 , Issue.5 , pp. 443-448
    • Henrion, D.1    Šebek, M.2
  • 26
    • 0022152212 scopus 로고
    • Efficient algorithm for matrix spectral factorization
    • Ježek J., and Kučera V. Efficient algorithm for matrix spectral factorization. Automatica 21 6 (1985) 663-669
    • (1985) Automatica , vol.21 , Issue.6 , pp. 663-669
    • Ježek, J.1    Kučera, V.2
  • 27
    • 72049098041 scopus 로고    scopus 로고
    • S. Kaplan, A. Shapiro, M. Teicher, Several applications of Bézout matrices, January 2006. Available from: arXiv:math.AG/0601047
    • S. Kaplan, A. Shapiro, M. Teicher, Several applications of Bézout matrices, January 2006. Available from: arXiv:math.AG/0601047
  • 28
    • 0011405384 scopus 로고
    • On the discriminant function of two commuting non-selfadjoint operators
    • Kravistky N. On the discriminant function of two commuting non-selfadjoint operators. Integral Equations Operator Theory 3 1 (1980) 97-124
    • (1980) Integral Equations Operator Theory , vol.3 , Issue.1 , pp. 97-124
    • Kravistky, N.1
  • 30
    • 67349207086 scopus 로고    scopus 로고
    • Convex sets with semidefinite representation
    • Lasserre J.B. Convex sets with semidefinite representation. Math. Prog. 120 2 (2009) 457-477
    • (2009) Math. Prog. , vol.120 , Issue.2 , pp. 457-477
    • Lasserre, J.B.1
  • 34
    • 33744747550 scopus 로고    scopus 로고
    • Linear symmetric determinantal hypersurfaces
    • Piontkowski J. Linear symmetric determinantal hypersurfaces. Michigan Math. J. 54 (2006) 117-146
    • (2006) Michigan Math. J. , vol.54 , pp. 117-146
    • Piontkowski, J.1
  • 35
    • 72049118564 scopus 로고    scopus 로고
    • PolyX Ltd, The Polynomial Toolbox for Matlab
    • PolyX Ltd., The Polynomial Toolbox for Matlab, 1998.
    • (1998)
  • 36
    • 31944433002 scopus 로고    scopus 로고
    • Hyperbolic programs and their derivative relaxations
    • Renegar J. Hyperbolic programs and their derivative relaxations. Found. Comput. Math. 6 1 (2006) 59-79
    • (2006) Found. Comput. Math. , vol.6 , Issue.1 , pp. 59-79
    • Renegar, J.1
  • 38
    • 85008411519 scopus 로고
    • Symbolic parametrization of curves
    • Sendra J.R., and Winkler F. Symbolic parametrization of curves. J. Symbolic Comput. 12 6 (1991) 607-631
    • (1991) J. Symbolic Comput. , vol.12 , Issue.6 , pp. 607-631
    • Sendra, J.R.1    Winkler, F.2
  • 39
    • 72049091305 scopus 로고    scopus 로고
    • I. Szilágyi, Symbolic-numeric Techniques for Cubic Surfaces, Ph.D. Thesis, RISC, Univ. Linz, Austria, 2005.
    • I. Szilágyi, Symbolic-numeric Techniques for Cubic Surfaces, Ph.D. Thesis, RISC, Univ. Linz, Austria, 2005.
  • 40
    • 33744774906 scopus 로고
    • Nonsingular cubic curves as determinantal loci
    • Taussky O. Nonsingular cubic curves as determinantal loci. J. Math. Phys. Sci. 21 6 (1987) 665-678
    • (1987) J. Math. Phys. Sci. , vol.21 , Issue.6 , pp. 665-678
    • Taussky, O.1
  • 42
    • 21344486577 scopus 로고
    • How bad are Hankel matrices?
    • Tyrtyshnikov E.E. How bad are Hankel matrices?. Numer. Math. 67 (1994) 261-269
    • (1994) Numer. Math. , vol.67 , pp. 261-269
    • Tyrtyshnikov, E.E.1
  • 43
    • 0031071301 scopus 로고    scopus 로고
    • Rational parametrization of curves using canonical divisors
    • van Hoeij M. Rational parametrization of curves using canonical divisors. J. Symbolic Comput. 23 (1997) 209-227
    • (1997) J. Symbolic Comput. , vol.23 , pp. 209-227
    • van Hoeij, M.1
  • 44
    • 34547160942 scopus 로고
    • Self-adjoint determinantal representations of real irreducible cubics
    • Birkhäuser
    • V. Vinnikov, Self-adjoint determinantal representations of real irreducible cubics, in: Operator Theory - Advances and Applications, vol. 19, Birkhäuser, 1986.
    • (1986) Operator Theory - Advances and Applications , vol.19
    • Vinnikov, V.1
  • 45
    • 0008807868 scopus 로고
    • Self-adjoint determinantal representations of real plane curves
    • Vinnikov V. Self-adjoint determinantal representations of real plane curves. Math. Ann. 296 (1993) 453-479
    • (1993) Math. Ann. , vol.296 , pp. 453-479
    • Vinnikov, V.1
  • 46
    • 0015206454 scopus 로고
    • Least squares stationary optimal control and the algebraic Riccati equation
    • Willems J.C. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Automat. Control 16 6 (1971) 621-634
    • (1971) IEEE Trans. Automat. Control , vol.16 , Issue.6 , pp. 621-634
    • Willems, J.C.1
  • 47
    • 0039508188 scopus 로고
    • Factorization of symmetric matrix polynomials
    • Yakubovich V.A. Factorization of symmetric matrix polynomials. Dokl. Akad. Nauk. SSSR 194 3 (1970) 1261-1264
    • (1970) Dokl. Akad. Nauk. SSSR , vol.194 , Issue.3 , pp. 1261-1264
    • Yakubovich, V.A.1
  • 48
    • 33646797746 scopus 로고    scopus 로고
    • A Toeplitz algorithm for polynomial J-spectral factorization
    • Zúñiga J.C., and Henrion D. A Toeplitz algorithm for polynomial J-spectral factorization. Automatica 42 7 (2006) 1085-1093
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1085-1093
    • Zúñiga, J.C.1    Henrion, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.