메뉴 건너뛰기




Volumn , Issue , 2009, Pages 121-130

A rich feature vector for protein-protein interaction extraction from multiple corpora

Author keywords

[No Author keywords available]

Indexed keywords

EXTRACTION; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; PROTEINS; SUPPORT VECTOR MACHINES; VECTORS;

EID: 71749116134     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1699510.1699527     Document Type: Conference Paper
Times cited : (102)

References (29)
  • 1
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for protein-protein interaction extraction with evaluation of cross corpus learning
    • Antti Airola, Sampo Pyysalo, Jari Björne, Tapio Pahikkala, Filip Ginter, and Tapio Salakoski. 2008. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross corpus learning. BMC Bioinformatics.
    • (2008) BMC Bioinformatics
    • Airola, A.1    Pyysalo, S.2    Björne, J.3    Pahikkala, T.4    Ginter, F.5    Salakoski, T.6
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Rie Kubota Ando, Tong Zhang, and Peter Bartlett. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2    Bartlett, P.3
  • 5
    • 84864058992 scopus 로고    scopus 로고
    • Subsequence kernels for relation extraction
    • Razvan C. Bunescu and Raymond J. Mooney. 2005. Subsequence kernels for relation extraction. In NIPS 2005.
    • (2005) NIPS 2005
    • Bunescu, R.C.1    Mooney, R.J.2
  • 7
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • Michael Collins. 2002. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In EMNLP 2002, pages 1-8.
    • (2002) EMNLP 2002 , pp. 1-8
    • Collins, M.1
  • 8
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. 2007. Boosting for transfer learning. In ICML 2007, pages 193-200.
    • (2007) ICML 2007 , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.-R.3    Yu, Y.4
  • 10
    • 56449101965 scopus 로고    scopus 로고
    • Confidence-weighted linear classification
    • Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Confidence-weighted linear classification. In ICML 2008, pages 264-271.
    • (2008) ICML 2008 , pp. 264-271
    • Dredze, M.1    Crammer, K.2    Pereira, F.3
  • 11
    • 78049366409 scopus 로고    scopus 로고
    • Semi-supervised classification for extracting protein interaction sentences using dependency parsing
    • Gunes Erkan, Arzucan Ozgur, and Dragomir R. Radev. 2007. Semi-supervised classification for extracting protein interaction sentences using dependency parsing. In EMNLP 2007.
    • (2007) EMNLP 2007
    • Erkan, G.1    Ozgur, A.2    Radev, D.R.3
  • 13
    • 33847294345 scopus 로고    scopus 로고
    • Relex-relation extraction using dependency parse trees
    • Katrin Fundel, Robert Küffner, and Ralf Zimmer. 2006. Relex-relation extraction using dependency parse trees. Bioinformatics, 23(3):365-371.
    • (2006) Bioinformatics , vol.23 , Issue.3 , pp. 365-371
    • Fundel, K.1    Küffner, R.2    Zimmer, R.3
  • 15
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpus-a semantically annotated corpus for bio-textmining
    • Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun'ichi Tsujii. 2003. GENIA corpus-a semantically annotated corpus for bio-textmining. Bioinformatics, 19:i180-i182.
    • (2003) Bioinformatics , vol.19
    • Kim, J.-D.1    Ohta, T.2    Tateisi, Y.3    Tsujii, J.4
  • 16
    • 40749087717 scopus 로고    scopus 로고
    • Corpus annotation for mining biomedical events from literature
    • Jin-Dong Kim, Tomoko Ohta, and Jun'ichi Tsujii. 2008a. Corpus annotation for mining biomedical events from literature. BMC Bioinformatics, 9:10.
    • (2008) BMC Bioinformatics , vol.9 , pp. 10
    • Kim, J.-D.1    Ohta, T.2    Tsujii, J.3
  • 17
    • 37549050918 scopus 로고    scopus 로고
    • Kernel approaches for genic interaction extraction
    • Seonho Kim, Juntae Yoon, and Jihoon Yang. 2008b. Kernel approaches for genic interaction extraction. Bioinformatics, 24(1):118-126.
    • (2008) Bioinformatics , vol.24 , Issue.1 , pp. 118-126
    • Kim, S.1    Yoon, J.2    Yang, J.3
  • 19
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • June
    • Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157, June.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 22
    • 84873426487 scopus 로고    scopus 로고
    • Learning language in logic-genic interaction extraction challenge
    • Claire Nédellec. 2005. Learning language in logic-genic interaction extraction challenge. In Proceedings of the LLL'05 Workshop.
    • (2005) Proceedings of the LLL'05 Workshop
    • Nédellec, C.1
  • 23
    • 70350633261 scopus 로고    scopus 로고
    • Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November
    • Sinno Jialin Pan and Qiang Yang. 2008. A survey on transfer learning. Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November.
    • (2008) A Survey on Transfer Learning
    • Pan, S.J.1    Yang, Q.2
  • 26
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for adaboost
    • Gunnar Ratsch, Takashi Onoda, and Klaus-Robert Muller. 2001. Soft margins for adaboost. Machine Learning, 42(3):287-320.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 28
    • 70049090801 scopus 로고    scopus 로고
    • An empirical analysis of domain adaptation algorithms for genomic sequence analysis
    • Gabriele Schweikert, Christian Widmer, Bernhard Schölkopf, and Gunnar Rätsch. 2008. An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In NIPS, pages 1433-1440.
    • (2008) NIPS , pp. 1433-1440
    • Schweikert, G.1    Widmer, C.2    Schölkopf, B.3    Rätsch, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.