메뉴 건너뛰기




Volumn , Issue , 2007, Pages 3100-3107

Indicator-based multi-objective local search

Author keywords

[No Author keywords available]

Indexed keywords

INDICATOR BASED EVOLUTIONARY ALGORITHM; PARETO RANKING METHODS; SELECTION INDICATORS;

EID: 71749090320     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2007.4424867     Document Type: Conference Paper
Times cited : (44)

References (31)
  • 2
    • 4043161279 scopus 로고    scopus 로고
    • Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem
    • Honolulu, USA
    • M. Basseur, F. Seynhaeve, and E.-G. Talbi. Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem. In Congress on Evolutionary Computation, volume 2, pages 1151-1156, Honolulu, USA, 2002.
    • (2002) Congress on Evolutionary Computation , vol.2 , pp. 1151-1156
    • Basseur, M.1    Seynhaeve, F.2    Talbi, E.-G.3
  • 4
    • 0002970319 scopus 로고    scopus 로고
    • Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms
    • P. J. Bentley and J. P. Wakefield. Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. Soft Computing in Engineering Design and Manufacturing, 5:231-340, 1997.
    • (1997) Soft Computing in Engineering Design and Manufacturing , vol.5 , pp. 231-340
    • Bentley, P.J.1    Wakefield, J.P.2
  • 9
    • 84947926042 scopus 로고    scopus 로고
    • A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II
    • M. Schoenauer et al. editors, volume 1917 of LNCS, Springer
    • K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer et al., editors, Parallel Problem Solving from Nature (PPSN VI), volume 1917 of LNCS, pages 849-858. Springer, 2000.
    • (2000) Parallel Problem Solving from Nature (PPSN VI) , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 10
    • 24644495446 scopus 로고    scopus 로고
    • Approximative solution methods for multiobjective combinatorial optimization
    • M. Ehrgott and X. Gandibleux. Approximative solution methods for multiobjective combinatorial optimization. TOP, 12(1):1-88, 2004.
    • (2004) TOP , vol.12 , Issue.1 , pp. 1-88
    • Ehrgott, M.1    Gandibleux, X.2
  • 12
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation discussion and generalization
    • San Mateo, USA
    • C. M. Fonseca and P. J. Flemming. Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In Fifth International Conference on Genetic Algorithms (ICGA'93), pages 416-423, San Mateo, USA, 1993.
    • (1993) Fifth International Conference on Genetic Algorithms (ICGA'93) , pp. 416-423
    • Fonseca, C.M.1    Flemming, P.J.2
  • 16
    • 0343757490 scopus 로고    scopus 로고
    • Tabu search for multiobjective optimization: MOTS
    • Cap town, South Africa, Jan
    • M. P. Hansen. Tabu search for multiobjective optimization: MOTS. In MCDM'97 conference, Cap town, South Africa, Jan 1997.
    • (1997) MCDM'97 Conference
    • Hansen, M.P.1
  • 18
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the pareto archived evolution strategy
    • J. D. Knowles and D. W. Corne. Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8(2):149-172, 2000.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 19
    • 33745794966 scopus 로고    scopus 로고
    • A tutorial on the performance assessment of stochastive multiobjective optimizers
    • Computer Engineering and Networks Laboratory, ETH Zurich, July
    • J. D. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assessment of stochastive multiobjective optimizers. Technical Report TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich, July 2005.
    • (2005) Technical Report TIK-Report No. 214
    • Knowles, J.D.1    Thiele, L.2    Zitzler, E.3
  • 20
    • 0022155858 scopus 로고
    • Defectiveness of weighting method in multicriterion optimization of structures
    • J. Koski. Defectiveness of weighting method in multicriterion optimization of structures. Communications in applied numerical methods, 1:333-337, 1985.
    • (1985) Communications in Applied Numerical Methods , vol.1 , pp. 333-337
    • Koski, J.1
  • 21
    • 27144431814 scopus 로고    scopus 로고
    • chapter An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling, Springer
    • D. Landa Silva, E. K. Burke, and S. Petrovic. Metaheuristic for Multiobjective Optimisation, chapter An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling, pages 91-129. Springer, 2004.
    • (2004) Metaheuristic for Multiobjective Optimisation , pp. 91-129
    • Landa Silva, D.1    Burke, E.K.2    Petrovic, S.3
  • 22
    • 35248856938 scopus 로고    scopus 로고
    • Modification of local search directions for non-dominated solutions in cellular multiobjective genetic algorithms for pattern classification problems
    • volume 2632 of LNCS, Springer
    • T. Murata, H. Nozawa, H. Ishibuchi, and M. Gen. Modification of local search directions for non-dominated solutions in cellular multiobjective genetic algorithms for pattern classification problems. In 2nd international conference on evolutionary multi-criterion optimization (EMO 2003), volume 2632 of LNCS, pages 593-607. Springer, 2003.
    • (2003) 2nd International Conference on Evolutionary Multi-criterion Optimization (EMO 2003) , pp. 593-607
    • Murata, T.1    Nozawa, H.2    Ishibuchi, H.3    Gen, M.4
  • 24
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221-248, 1994.
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 25
    • 0035694098 scopus 로고    scopus 로고
    • Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization
    • K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. Evolutionary Computation, 5(6):565-588, 2001.
    • (2001) Evolutionary Computation , vol.5 , Issue.6 , pp. 565-588
    • Tan, K.C.1    Lee, T.H.2    Khor, E.F.3
  • 28
    • 2942547409 scopus 로고    scopus 로고
    • SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
    • K. Giannakoglou et al. editors. International Center for Numerical Methods in Engineering (CIMNE)
    • E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In K. Giannakoglou et al., editors, Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pages 95-100. International Center for Numerical Methods in Engineering (CIMNE), 2002.
    • (2002) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001) , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 29
    • 33646521128 scopus 로고    scopus 로고
    • volume 535 of Lecture Notes in Economics and Mathematical Systems, chapter A tutorial on evolutionary multiobjective optimization, Springer
    • E. Zitzler, M. Laumanns, and L. Thiele. Metaheuristics for multiobjective optimisation, volume 535 of Lecture Notes in Economics and Mathematical Systems, chapter A tutorial on evolutionary multiobjective optimization, pages 3-37. Springer, 2004.
    • (2004) Metaheuristics for Multiobjective Optimisation , pp. 3-37
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 30
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. Evolutionary Computation, 3:257-271, 1999.
    • (1999) Evolutionary Computation , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.