메뉴 건너뛰기




Volumn 72, Issue 2, 2009, Pages 955-964

The existence of countably many positive solutions for singular multipoint boundary value problems

Author keywords

Fixed point index theory; Leggett Williams' fixed point theorem; Multipoint boundary value problems; Positive solutions

Indexed keywords

FIXED POINT THEOREMS; FIXED-POINT INDEX THEORY; LEGGETT-WILLIAMS; MULTIPOINT BOUNDARY VALUE PROBLEMS; POSITIVE SOLUTION;

EID: 71649099266     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2009.07.031     Document Type: Article
Times cited : (28)

References (16)
  • 1
    • 0000384611 scopus 로고
    • Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects
    • Il'in V.A., and Moiseev E.I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 (1987) 803-810
    • (1987) Differ. Equ. , vol.23 , pp. 803-810
    • Il'in, V.A.1    Moiseev, E.I.2
  • 2
    • 0000384610 scopus 로고
    • Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator
    • Il'in V.A., and Moiseev E.I. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23 (1987) 979-987
    • (1987) Differ. Equ. , vol.23 , pp. 979-987
    • Il'in, V.A.1    Moiseev, E.I.2
  • 3
    • 33750605800 scopus 로고    scopus 로고
    • Symmetric positive solutions of nonlinear boundary value problems
    • Graef J.R., Kong L., and Kong Q. Symmetric positive solutions of nonlinear boundary value problems. J. Math. Anal. Appl. 326 (2007) 1310-1327
    • (2007) J. Math. Anal. Appl. , vol.326 , pp. 1310-1327
    • Graef, J.R.1    Kong, L.2    Kong, Q.3
  • 4
    • 0031106937 scopus 로고    scopus 로고
    • Positive solutions for nonlinear eigenvalue problems
    • Henderson J., and Wang H.Y. Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl. 208 (1997) 252-259
    • (1997) J. Math. Anal. Appl. , vol.208 , pp. 252-259
    • Henderson, J.1    Wang, H.Y.2
  • 5
    • 0001367342 scopus 로고    scopus 로고
    • Solvability of a three-point nonlinear boundary value problems at resonance
    • Feng W., and Webb J.R.L. Solvability of a three-point nonlinear boundary value problems at resonance. Nonlinear Anal. 30 (1997) 3227-3238
    • (1997) Nonlinear Anal. , vol.30 , pp. 3227-3238
    • Feng, W.1    Webb, J.R.L.2
  • 6
    • 4243074079 scopus 로고    scopus 로고
    • Multi-point boundary value problems of second order differential equations (I)
    • Kong L., and Kong Q. Multi-point boundary value problems of second order differential equations (I). Nonlinear Anal. 58 (2004) 909-931
    • (2004) Nonlinear Anal. , vol.58 , pp. 909-931
    • Kong, L.1    Kong, Q.2
  • 7
    • 0038008731 scopus 로고    scopus 로고
    • Existence of multiple positive solutions for nonlinear m-point boundary value problems
    • Bai C., and Fang J. Existence of multiple positive solutions for nonlinear m-point boundary value problems. J. Math. Anal. Appl. 281 (2003) 76-85
    • (2003) J. Math. Anal. Appl. , vol.281 , pp. 76-85
    • Bai, C.1    Fang, J.2
  • 8
    • 38949204485 scopus 로고    scopus 로고
    • The existence of countably many positive solutions for nonlinear singular m-point boundary value problems
    • Liang S., and Zhang J. The existence of countably many positive solutions for nonlinear singular m-point boundary value problems. J. Comput. Appl. Math. 214 (2008) 78-89
    • (2008) J. Comput. Appl. Math. , vol.214 , pp. 78-89
    • Liang, S.1    Zhang, J.2
  • 9
    • 34247234996 scopus 로고    scopus 로고
    • Multiple positive solutions for some p-Laplacian boundary value problems
    • Ji D., and Ge W. Multiple positive solutions for some p-Laplacian boundary value problems. Appl. Math. Comput. 187 2 (2007) 1315-1325
    • (2007) Appl. Math. Comput. , vol.187 , Issue.2 , pp. 1315-1325
    • Ji, D.1    Ge, W.2
  • 10
    • 33845901723 scopus 로고    scopus 로고
    • An theorem about triple positive solutions for the one-dimensional p-Laplacian equations
    • He X., and Ge W. An theorem about triple positive solutions for the one-dimensional p-Laplacian equations. Acta Math. Appl. Sin. 26 (2003) 504-510
    • (2003) Acta Math. Appl. Sin. , vol.26 , pp. 504-510
    • He, X.1    Ge, W.2
  • 11
    • 39749133861 scopus 로고    scopus 로고
    • Existence of multiple positive solutions for Sturm-Liouville-like four-point boundary value problem with p-Laplacian
    • Ji D., and Ge W. Existence of multiple positive solutions for Sturm-Liouville-like four-point boundary value problem with p-Laplacian. Nonlinear Anal. 68 (2008) 2638-2646
    • (2008) Nonlinear Anal. , vol.68 , pp. 2638-2646
    • Ji, D.1    Ge, W.2
  • 12
    • 0000784681 scopus 로고    scopus 로고
    • A generalized multi-point boundary value problem for second order ordinary differential equations
    • Gupta C.P. A generalized multi-point boundary value problem for second order ordinary differential equations. Appl. Math. Comput. 89 (1998) 133-146
    • (1998) Appl. Math. Comput. , vol.89 , pp. 133-146
    • Gupta, C.P.1
  • 13
    • 26444610646 scopus 로고    scopus 로고
    • Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator
    • Ma D., Du Z., and Ge W. Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator. Comput. Math. Appl. 50 (2005) 729-739
    • (2005) Comput. Math. Appl. , vol.50 , pp. 729-739
    • Ma, D.1    Du, Z.2    Ge, W.3
  • 14
    • 29544449556 scopus 로고    scopus 로고
    • Existence of multiple positive solutions for one-dimensional p-Laplacian
    • Wang Y., and Hou C. Existence of multiple positive solutions for one-dimensional p-Laplacian. J. Math. Anal. Appl. 315 (2006) 144-153
    • (2006) J. Math. Anal. Appl. , vol.315 , pp. 144-153
    • Wang, Y.1    Hou, C.2
  • 16
    • 26444584987 scopus 로고    scopus 로고
    • Positive solutions of three-point boundary value problems for the one-dimensional p-Laplacian with infinitely many singularities
    • Liu B. Positive solutions of three-point boundary value problems for the one-dimensional p-Laplacian with infinitely many singularities. Appl. Math. Lett. 17 (2004) 655-661
    • (2004) Appl. Math. Lett. , vol.17 , pp. 655-661
    • Liu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.