-
1
-
-
0022898888
-
Modifications to the McClellan, Parks and Rabiner, "Computer program for designing higher order differentiating FIR filters"
-
Rahenkamp C.A., and Vijaya Kumar B.V.K. Modifications to the McClellan, Parks and Rabiner, "Computer program for designing higher order differentiating FIR filters". IEEE Trans. Acoust. Speech Signal Process. 34 6 (1986) 1671-1674
-
(1986)
IEEE Trans. Acoust. Speech Signal Process.
, vol.34
, Issue.6
, pp. 1671-1674
-
-
Rahenkamp, C.A.1
Vijaya Kumar, B.V.K.2
-
2
-
-
34250899901
-
Eigenfilter design of higher order digital differentiators
-
Pei S.C., and Shyu J.J. Eigenfilter design of higher order digital differentiators. IEEE Trans. Acoust. Speech Signal Process. 37 4 (1989) 505-511
-
(1989)
IEEE Trans. Acoust. Speech Signal Process.
, vol.37
, Issue.4
, pp. 505-511
-
-
Pei, S.C.1
Shyu, J.J.2
-
3
-
-
0025452179
-
Design efficient second and higher order FIR digital differentiators for low frequencies
-
Reddy M.R.R., Kumar B., and Dutta Roy S.C. Design efficient second and higher order FIR digital differentiators for low frequencies. Signal Process. 20 (July 1990) 219
-
(1990)
Signal Process.
, vol.20
, pp. 219
-
-
Reddy, M.R.R.1
Kumar, B.2
Dutta Roy, S.C.3
-
4
-
-
85048209257
-
Least-squares design of higher order nonrecursive differentiators
-
Sunder S., and Ramachandran R.P. Least-squares design of higher order nonrecursive differentiators. IEEE Trans. Signal Process. 42 11 (November 1995) 711-716
-
(1995)
IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 711-716
-
-
Sunder, S.1
Ramachandran, R.P.2
-
5
-
-
0033354431
-
Genetic algorithm approach for designing higher order digital differentiators
-
Tzeng S.-T., and Lu H.-C. Genetic algorithm approach for designing higher order digital differentiators. Signal Process. 79 (1999) 175-186
-
(1999)
Signal Process.
, vol.79
, pp. 175-186
-
-
Tzeng, S.-T.1
Lu, H.-C.2
-
6
-
-
0030105978
-
Analytic closed-formed matrix for designing higher order digital differentiators using eigen-approach
-
Pei S.C., and Shyu J.J. Analytic closed-formed matrix for designing higher order digital differentiators using eigen-approach. IEEE Trans. Signal Process. 44 3 (March 1996) 698-701
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, Issue.3
, pp. 698-701
-
-
Pei, S.C.1
Shyu, J.J.2
-
7
-
-
0035899239
-
Analytical design of higher order differentiators using least-squares technique
-
Mollova G.S., and Unbehauen R. Analytical design of higher order differentiators using least-squares technique. Electron. Lett. 37 22 (2001) 1098-1099
-
(2001)
Electron. Lett.
, vol.37
, Issue.22
, pp. 1098-1099
-
-
Mollova, G.S.1
Unbehauen, R.2
-
8
-
-
0022721216
-
Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit
-
Tank D.W., and Hopfield J. Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. CAS-33 4 (April 1986) 533-541
-
(1986)
IEEE Trans. Circuits Syst.
, vol.CAS-33
, Issue.4
, pp. 533-541
-
-
Tank, D.W.1
Hopfield, J.2
-
9
-
-
11844304342
-
Neural least-squares design of higher order digital differentiators
-
Jou Y.-D. Neural least-squares design of higher order digital differentiators. IEEE Signal Process. Lett. 12 1 (January 2005) 9-12
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.1
, pp. 9-12
-
-
Jou, Y.-D.1
-
10
-
-
0028498278
-
Design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique
-
Sunder S., and Ramachandran V. Design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique. IEEE Trans. Signal Process. 42 9 (September 1994) 2504-2509
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, Issue.9
, pp. 2504-2509
-
-
Sunder, S.1
Ramachandran, V.2
-
11
-
-
34547955577
-
Application of weighted least-squares technique for designing equiripple FIR higher order digital differentiators
-
Bhosle S.N., Deshpande D.K., and Latte M.V. Application of weighted least-squares technique for designing equiripple FIR higher order digital differentiators. IE(I) Journal-CP 85 (November 2004) 29-33
-
(2004)
IE(I) Journal-CP
, vol.85
, pp. 29-33
-
-
Bhosle, S.N.1
Deshpande, D.K.2
Latte, M.V.3
|