메뉴 건너뛰기




Volumn 7497, Issue , 2009, Pages

MRI brain tumor segmentation based on improved fuzzy c-means method

Author keywords

Brain tumor; FCM; Gradient; Inhomogeneity; MRI

Indexed keywords

BRAIN TUMOR SEGMENTATION; BRAIN TUMORS; CLUSTERING SEGMENTATION; FUZZY C-MEANS ALGORITHMS; IMPROVED FUZZY C-MEANS; INHOMOGENEITIES; KEY PROBLEMS; MEAN VARIANCE; MEDICAL IMAGE PROCESSING; MEDICAL IMAGE SEGMENTATION; OBJECTIVE FUNCTIONS; REGION OF INTEREST; SPATIAL INFORMATIONS;

EID: 71549148710     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.832577     Document Type: Conference Paper
Times cited : (3)

References (10)
  • 2
    • 33845339640 scopus 로고    scopus 로고
    • A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images
    • W.B.Dou, R.Su, Y.P.Chen, D.Bloyet and J.M.Constans, "A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images," IVC(25), No. 2, pp. 164-171,2007.
    • (2007) IVC , Issue.2 , pp. 164-171
    • Dou, W.B.1    Su, R.2    Chen, Y.P.3    Bloyet, D.4    Constans, J.M.5
  • 3
    • 11144308016 scopus 로고    scopus 로고
    • A Modified Fuzzy C-Means Algorithm for Segmentation of Magnetic Resonance Images
    • Sydney, pp
    • J. Lei and W. H. Yang, "A Modified Fuzzy C-Means Algorithm for Segmentation of Magnetic Resonance Images," VIIth Digital Image Computing: Techniques and Applications, Sydney, pp.10-12, 2003.
    • (2003) VIIth Digital Image Computing: Techniques and Applications , pp. 10-12
    • Lei, J.1    Yang, W.H.2
  • 4
    • 0018306059 scopus 로고
    • A Threshold Selection Method from Gray Level Histograms
    • N. Otsu, "A Threshold Selection Method from Gray Level Histograms," IEEE Trans. Systems, vol. SMC-8, pp.62-66, 1979.
    • (1979) IEEE Trans. Systems , vol.SMC-8 , pp. 62-66
    • Otsu, N.1
  • 5
    • 71549141904 scopus 로고    scopus 로고
    • Measuring perimeter and area in low resolution images using a fuzzy approach
    • Proceedings of the 11th International Conference on Discrete Geometry for Computer Imagery DGCI, of, Springer, Italy, pp
    • N. Sladoje, I. Nyström and P.K. Saha, "Measuring perimeter and area in low resolution images using a fuzzy approach ," Proceedings of the 11th International Conference on Discrete Geometry for Computer Imagery (DGCI ), Vol. 2886 of LNCS, Springer, Italy , pp. 348-357, 2003.
    • (2003) LNCS , vol.2886 , pp. 348-357
    • Sladoje, N.1    Nyström, I.2    Saha, P.K.3
  • 6
    • 50149097024 scopus 로고    scopus 로고
    • Segmentation of MRI using new unsupervised fuzzy mean algorithm
    • S. R. Kannan, "Segmentation of MRI using new unsupervised fuzzy mean algorithm," Int. J. Graphics Vision Image Process, pp. 1-8, 2005.
    • (2005) Int. J. Graphics Vision Image Process , pp. 1-8
    • Kannan, S.R.1
  • 7
    • 2442609070 scopus 로고    scopus 로고
    • Application of a new medical image segmentation method based on fuzzy connectedness and fcm
    • Y. Lin, J. Tian and X. P. Zhang, "Application of a new medical image segmentation method based on fuzzy connectedness and fcm," Chinese journal of stereology and image analysis, vol.6, no.2, pp.103-108, 2001.
    • (2001) Chinese journal of stereology and image analysis , vol.6 , Issue.2 , pp. 103-108
    • Lin, Y.1    Tian, J.2    Zhang, X.P.3
  • 8
    • 0027275316 scopus 로고
    • Review of MRI Images Segmentation Techniques using pattern recognition
    • J. C. Bezdek, "Review of MRI Images Segmentation Techniques using pattern recognition," Medical Physics, Vol.20, No.4, pp.1033-1048, 1993.
    • (1993) Medical Physics , vol.20 , Issue.4 , pp. 1033-1048
    • Bezdek, J.C.1
  • 10
    • 56349113888 scopus 로고    scopus 로고
    • Improved Fast Fuzzy C-Means Algorithm for Medical MR Images segmentation
    • M. Li and T. L. Huang, "Improved Fast Fuzzy C-Means Algorithm for Medical MR Images segmentation," Genetic and Evolutionary Computing (WGEC), pp.1-4 , 2008.
    • (2008) Genetic and Evolutionary Computing (WGEC) , pp. 1-4
    • Li, M.1    Huang, T.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.