-
1
-
-
0001589281
-
-
10.1103/RevModPhys.69.865
-
J. Eggers, Rev. Mod. Phys. 69, 865 (1997). 10.1103/RevModPhys.69.865
-
(1997)
Rev. Mod. Phys.
, vol.69
, pp. 865
-
-
Eggers, J.1
-
2
-
-
0034682861
-
-
10.1126/science.289.5482.1165
-
M. Moseler and U. Landman, Science 289, 1165 (2000). 10.1126/science.289. 5482.1165
-
(2000)
Science
, vol.289
, pp. 1165
-
-
Moseler, M.1
Landman, U.2
-
3
-
-
4043102280
-
-
10.1103/PhysRevLett.89.084502
-
J. Eggers, Phys. Rev. Lett. 89, 084502 (2002). 10.1103/PhysRevLett.89. 084502
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 084502
-
-
Eggers, J.1
-
6
-
-
0039092608
-
-
10.1103/RevModPhys.58.977
-
D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Schraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986). 10.1103/RevModPhys.58.977
-
(1986)
Rev. Mod. Phys.
, vol.58
, pp. 977
-
-
Bensimon, D.1
Kadanoff, L.P.2
Liang, S.3
Schraiman, B.I.4
Tang, C.5
-
7
-
-
7244248613
-
-
10.1063/1.1784931
-
J. Casademunt, Chaos 14, 809 (2004). 10.1063/1.1784931
-
(2004)
Chaos
, vol.14
, pp. 809
-
-
Casademunt, J.1
-
8
-
-
0000127076
-
-
10.1103/PhysRevE.54.6260
-
L. Carrillo, F. X. Magdaleno, J. Casademunt, and J. Ortín, Phys. Rev. E 54, 6260 (1996). 10.1103/PhysRevE.54.6260
-
(1996)
Phys. Rev. e
, vol.54
, pp. 6260
-
-
Carrillo, L.1
Magdaleno, F.X.2
Casademunt, J.3
Ortín, J.4
-
10
-
-
42749103600
-
-
10.1103/PhysRevE.68.026308
-
E. Alvarez-Lacalle, E. Pauné, J. Casademunt, and J. Ortín, Phys. Rev. E 68, 026308 (2003). 10.1103/PhysRevE.68.026308
-
(2003)
Phys. Rev. e
, vol.68
, pp. 026308
-
-
Alvarez-Lacalle, E.1
Pauné, E.2
Casademunt, J.3
Ortín, J.4
-
13
-
-
12444298596
-
-
10.1103/PhysRevE.47.4169
-
P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley, and S.-M. Zhou, Phys. Rev. E 47, 4169 (1993). 10.1103/PhysRevE.47.4169
-
(1993)
Phys. Rev. e
, vol.47
, pp. 4169
-
-
Constantin, P.1
Dupont, T.F.2
Goldstein, R.E.3
Kadanoff, L.P.4
Shelley, M.J.5
Zhou, S.-M.6
-
14
-
-
0001007002
-
-
10.1103/PhysRevE.47.4182
-
T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, and S.-M. Zhou, Phys. Rev. E 47, 4182 (1993). 10.1103/PhysRevE.47.4182
-
(1993)
Phys. Rev. e
, vol.47
, pp. 4182
-
-
Dupont, T.F.1
Goldstein, R.E.2
Kadanoff, L.P.3
Zhou, S.-M.4
-
17
-
-
0029656405
-
-
10.1063/1.869102
-
R. Almgren, Phys. Fluids 8, 344 (1996). 10.1063/1.869102
-
(1996)
Phys. Fluids
, vol.8
, pp. 344
-
-
Almgren, R.1
-
21
-
-
71449108180
-
-
10.1103/PhysRevE.80.056305
-
R. Folch, E. Alvarez-Lacalle, J. Ortín, and J. Casademunt, Phys. Rev. E 80, 056305 (2009). 10.1103/PhysRevE.80.056305
-
(2009)
Phys. Rev. e
, vol.80
, pp. 056305
-
-
Folch, R.1
Alvarez-Lacalle, E.2
Ortín, J.3
Casademunt, J.4
-
22
-
-
0028388913
-
-
10.1017/S0022112094000480
-
J. Eggers and T. F. Dupont, J. Fluid Mech. 262, 205 (1994). 10.1017/S0022112094000480
-
(1994)
J. Fluid Mech.
, vol.262
, pp. 205
-
-
Eggers, J.1
Dupont, T.F.2
-
23
-
-
71449126814
-
-
Note that the linear growth of the vorticity with x in Eq. 10 produces an apparent divergence of the integrals in Eq. 7 if considered separately and taken all the way to infinity. Note, however, that these would be naturally regularized for a closed (finite) interface and the two integrals in Eq. 7 would cancel with each other the diverging part in the limit where the closure of the interface is taken to infinity.
-
Note that the linear growth of the vorticity with x in Eq. produces an apparent divergence of the integrals in Eq. 7 if considered separately and taken all the way to infinity. Note, however, that these would be naturally regularized for a closed (finite) interface and the two integrals in Eq. would cancel with each other the diverging part in the limit where the closure of the interface is taken to infinity.
-
-
-
|