메뉴 건너뛰기




Volumn 15, Issue 13, 2009, Pages 2744-2763

A new short-term power load forecasting model based on chaotic time series and SVM

Author keywords

Chaotic time series; Load forecasting; Lyapunov exponents; Parameter selection; Support vector machine

Indexed keywords


EID: 71449115480     PISSN: 0958695X     EISSN: 09486968     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (43)
  • 1
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classiers by modifying kernel functions
    • Amari S., Wu S. (1999). Improving support vector machine classiers by modifying kernel functions. Neural Networks, 12(6): 783-789.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 2
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classiers by modifying kernel functions
    • Amari S., Wu S. (1999). Improving support vector machine classiers by modifying kernel functions. Neural Networks, 12(6): 783-789.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 3
    • 0033874583 scopus 로고    scopus 로고
    • Forecasting loads and prices in competitive power markets
    • Bunn DW. (2000). Forecasting loads and prices in competitive power markets. Proc IEEE., 88(2): 163-169.
    • (2000) Proc IEEE , vol.88 , Issue.2 , pp. 163-169
    • Bunn, D.W.1
  • 4
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. (2003). Support vector machines experts for time series forecasting. Neurocomputing, 51: 321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 5
    • 0029368511 scopus 로고
    • Analysis of an adaptive time-series auto regressive moving-average(ARMA) model for short-term load forecasting
    • Chen JF, Wang WM, Huang CM. (1995). Analysis of an adaptive time-series auto regressive moving-average(ARMA) model for short-term load forecasting. Electric Power System Research, 34(3): 187-196.
    • (1995) Electric Power System Research , vol.34 , Issue.3 , pp. 187-196
    • Chen, J.F.1    Wang, W.M.2    Huang, C.M.3
  • 6
    • 28444480059 scopus 로고    scopus 로고
    • Chaos Forecasting for Traffic Flow Based on Lyapunov exponent
    • Chen Suyan, Wang Wei. (2004). Chaos Forecasting for Traffic Flow Based on Lyapunov exponent. China Civil Engineering Journal, 37(9): 96-99.
    • (2004) China Civil Engineering Journal , vol.37 , Issue.9 , pp. 96-99
    • Suyan, C.1    Wei, W.2
  • 7
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1): 113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. (1995). Support vector networks. Mach Learn, 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0032205039 scopus 로고    scopus 로고
    • The impact of temperature forecast uncertainty on Bayesian load forecasting
    • Douglas AP, Breipohl AM, Lee FN, Adapa R. (1998). The impact of temperature forecast uncertainty on Bayesian load forecasting. IEEE Trans Pow Syst., 13(4): 1507-1513.
    • (1998) IEEE Trans Pow Syst , vol.13 , Issue.4 , pp. 1507-1513
    • Douglas, A.P.1    Breipohl, A.M.2    Lee, F.N.3    Adapa, R.4
  • 12
    • 26844563651 scopus 로고    scopus 로고
    • Support vector machines for regression
    • Shuxing Du and Tiejun Wu. (2003). Support vector machines for regression. Journal of System Simulation, 15(11): 1580-1586.
    • (2003) Journal of System Simulation , vol.15 , Issue.11 , pp. 1580-1586
    • Shuxing, D.1    Tiejun, W.2
  • 13
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W, Nakamori Y, Wang SY. (2005). Forecasting stock market movement direction with support vector machine. Computers and Operations Research, 32(10): 2513-2522.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 14
    • 0036825832 scopus 로고    scopus 로고
    • Local Averaging Optimization for Chaotic Time Series Prediction
    • James McNames. (2002). Local Averaging Optimization for Chaotic Time Series Prediction. Neurocomputing, 48(2): 279-297.
    • (2002) Neurocomputing , vol.48 , Issue.2 , pp. 279-297
    • McNames, J.1
  • 16
    • 0032279174 scopus 로고    scopus 로고
    • Short-term power load forecasting based on lyapunov exponents
    • Zhishan Liang, Liming Wang, and Dapeng Fu. (1998). Short-term power load forecasting based on lyapunov exponents. Proceeding of the CSEE, 18: 368-472.
    • (1998) Proceeding of The CSEE , vol.18 , pp. 368-472
    • Liang, Z.1    Wang, L.2    Dapeng, F.3
  • 17
    • 0141678325 scopus 로고    scopus 로고
    • Study of support vector machines for short-term power load forecasting
    • Yuanchen Li, Tingjian Fang, and Erkeng Yu. (2003). Study of support vector machines for short-term power load forecasting. Proceeding of the CSEE., 25: 55-59.
    • (2003) Proceeding of The CSEE , vol.25 , pp. 55-59
    • Li, Y.1    Fang, T.2    Erkeng, Y.3
  • 18
    • 33746837186 scopus 로고    scopus 로고
    • Computing the largest lyapunov exponents from time series
    • Guohui Li, Shiping Zhou, and Deming Xu. (2003). Computing the largest lyapunov exponents from time series. Journal of Applied Sciences, 21(2): 127-131.
    • (2003) Journal of Applied Sciences , vol.21 , Issue.2 , pp. 127-131
    • Li, G.1    Zhou, S.2    Deming, X.3
  • 19
    • 0034335147 scopus 로고    scopus 로고
    • The chaotic property of power load and its forecasting
    • Tianyun Li and Zifa Liu. (2000). The chaotic property of power load and its forecasting. Proceeding of the CSEE, 20: 36-40.
    • (2000) Proceeding of The CSEE , vol.20 , pp. 36-40
    • Li, T.1    Liu, Z.2
  • 20
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • E.N. Lorenz, (1963). Deterministic nonperiodic flow. J. Atmos. Sci.,20: 130-141.
    • (1963) J. Atmos. Sci , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 22
    • 0742286970 scopus 로고    scopus 로고
    • Application Study on Reconstruction of Chaotic Time Series and Prediction of Shanghai Stock Index
    • Ma Haijun. (2003). Application Study on Reconstruction of Chaotic Time Series and Prediction of Shanghai Stock Index. Systems Engineering-theory & Practice, 8(12): 86-94.
    • (2003) Systems Engineering-theory & Practice , vol.8 , Issue.12 , pp. 86-94
    • Ma, H.1
  • 23
    • 0027544506 scopus 로고
    • Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation
    • Mbamalu GAN, El-Hawary ME. (1993). Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation. IEEE Trans Pow Syst., 8(1): 343-348.
    • (1993) IEEE Trans Pow Syst , vol.8 , Issue.1 , pp. 343-348
    • Mbamalu, G.A.N.1    El-Hawary, M.E.2
  • 27
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai PF, Lin CS. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33(6): 497-505.
    • (2005) Omega , vol.33 , Issue.6 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 28
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai PF, Hong WC. (2005). Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management, 46(17): 2669-2688.
    • (2005) Energy Conversion and Management , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 29
    • 33646130599 scopus 로고    scopus 로고
    • Software reliability forecasting by support vector machines with simulated annealing algorithms
    • Pai PF, Hong WC. (2006). Software reliability forecasting by support vector machines with simulated annealing algorithms. J Syst Software., 79(6): 747-755.
    • (2006) J Syst Software , vol.79 , Issue.6 , pp. 747-755
    • Pai, P.F.1    Hong, W.C.2
  • 30
    • 0026154960 scopus 로고
    • Composite modelling for adaptive short-term load forecasting
    • Park JH, Park YM, Lee KY. (1991). Composite modelling for adaptive short-term load forecasting. IEEE Trans Pow Syst., 6(2): 450-457.
    • (1991) IEEE Trans Pow Syst , vol.6 , Issue.2 , pp. 450-457
    • Park, J.H.1    Park, Y.M.2    Lee, K.Y.3
  • 31
    • 45149086927 scopus 로고    scopus 로고
    • Study of Nonlinear Behaviour on Price and Volatility of Chinese Stock Markets
    • Su Chengjian. (2006). Study of Nonlinear Behaviour on Price and Volatility of Chinese Stock Markets. Mathematics In Practice and Theory, 36(2): 141-148.
    • (2006) Mathematics In Practice and Theory , vol.36 , Issue.2 , pp. 141-148
    • Chengjian, S.1
  • 32
    • 33750698697 scopus 로고    scopus 로고
    • Design and implementation of lyapunov exponents calculating algorithm
    • Kehui Sun, Guoqiang Tan, and Liyuan Sheng. (2004). Design and implementation of lyapunov exponents calculating algorithm. Computer Engineering and Application, 35: 12-14.
    • (2004) Computer Engineering and Application , vol.35 , pp. 12-14
    • Sun, K.1    Tan, G.2    Sheng, L.3
  • 33
    • 33750739327 scopus 로고    scopus 로고
    • Small-sample machine learning theory-statistical learning theory
    • Dongning Tan and Donghan Tan. (2001). Small-sample machine learning theory-statistical learning theory. Journal of Nanjing University of Science and Technology, 25(1): 108-112.
    • (2001) Journal of Nanjing University of Science and Technology , vol.25 , Issue.1 , pp. 108-112
    • Tan, D.1    Tan, D.2
  • 35
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Vladimir Cherkassky, Yunqian Ma. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Network, 17: 113-126.
    • (2004) Neural Network , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 37
    • 33749589212 scopus 로고    scopus 로고
    • A survey on support vector machine training and testing algorithms
    • Xiaodan Wang and Jiqing Wang. (2003). A survey on support vector machine training and testing algorithms. Computer Engineering and Application, 13: 75-79.
    • (2003) Computer Engineering and Application , vol.13 , pp. 75-79
    • Wang, X.1    Wang, J.2
  • 38
    • 0242626902 scopus 로고    scopus 로고
    • The analysis approach based on chaotic time series for load forecasting
    • Quan Wen, Yangchuan Zhang, and Shijie Chen. (2001). The analysis approach based on chaotic time series for load forecasting. Power System Technology, 25(10): 13-16.
    • (2001) Power System Technology , vol.25 , Issue.10 , pp. 13-16
    • Wen, Q.1    Zhang, Y.2    Chen, S.3
  • 39
    • 0008494528 scopus 로고
    • Determining lyapunov exponents from a time series
    • Wolf A, Swift J B, and Swinney H L. (1985). Determining lyapunov exponents from a time series. Physics D., 16: 285-317.
    • (1985) Physics D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3
  • 40
  • 42
    • 1642634037 scopus 로고    scopus 로고
    • An Improved Sequential Minimal Optimization Learning Algorithm for Regression Support Vector Machine
    • Zhang, H.R., Han, Z.Z. (2003). An Improved Sequential Minimal Optimization Learning Algorithm for Regression Support Vector Machine. Journal of Software, 14: 2006-2013.
    • (2003) Journal of Software , vol.14 , pp. 2006-2013
    • Zhang, H.R.1    Han, Z.Z.2
  • 43
    • 6344260137 scopus 로고    scopus 로고
    • Application of support vector machines based on time sequence in power system load forecasting
    • Lin Zhang, Xianshan Liu, and Hejun Yin. (2004). Application of support vector machines based on time sequence in power system load forecasting. Power System Technology, 28(19): 38-41.
    • (2004) Power System Technology , vol.28 , Issue.19 , pp. 38-41
    • Zhang, L.1    Liu, X.2    Yin, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.