-
7
-
-
62249160689
-
-
10.1038/nnano.2008.415
-
C. R. Moon, Nat. Nanotechnol. 4, 167 (2009). 10.1038/nnano.2008.415
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 167
-
-
Moon, C.R.1
-
8
-
-
25744461367
-
-
10.1103/PhysRevB.22.5142;
-
B. L. Altshuler, D. Khmelnitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980) 10.1103/PhysRevB.22.5142
-
(1980)
Phys. Rev. B
, vol.22
, pp. 5142
-
-
Altshuler, B.L.1
Khmelnitzkii, D.2
Larkin, A.I.3
Lee, P.A.4
-
9
-
-
0041053604
-
-
10.1016/0370-1573(84)90103-0
-
G. Bergmann, Phys. Rep. 107, 1 (1984). 10.1016/0370-1573(84)90103-0
-
(1984)
Phys. Rep.
, vol.107
, pp. 1
-
-
Bergmann, G.1
-
13
-
-
33947210777
-
-
10.1103/RevModPhys.79.353
-
O. Fischer, Rev. Mod. Phys. 79, 353 (2007). 10.1103/RevModPhys.79.353
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 353
-
-
Fischer, O.1
-
14
-
-
0003781869
-
-
Expression 2 gives a spurious divergence for the real part of G (r,ω) for r=0. This divergence is regularized by using Kramers-Kroning relations to define the real part of G (0,ω) in expression 8 as ReG (0,ω) =- 2 π P ImG (0, ω′) ω- ω′ d ω′ and by cutting off the integral with the corresponding electron bandwidth [see, e.g., W.A. Benjamin Inc., London
-
Expression 2 gives a spurious divergence for the real part of G (r,ω) for r=0. This divergence is regularized by using Kramers-Kroning relations to define the real part of G (0,ω) in expression 8 as ReG (0,ω) =- 2 π P ImG (0, ω′) ω- ω′ d ω′ and by cutting off the integral with the corresponding electron bandwidth [see, e.g., S. Doniach and E. H. Sondheimer, Green's Functions for Solid Physicists (W.A. Benjamin Inc., London, 1974), p. 79].
-
(1974)
Green's Functions for Solid Physicists
, pp. 79
-
-
Doniach, S.1
Sondheimer, E.H.2
-
15
-
-
71449090939
-
-
Note that the experimental dI/dV maps will show the Aharonov-Bohm oscillations even if dI/dV is not proportional to the local density of states of the sample.
-
Note that the experimental dI/dV maps will show the Aharonov-Bohm oscillations even if dI/dV is not proportional to the local density of states of the sample.
-
-
-
-
16
-
-
0000792638
-
-
In the case of Cu(111) and Ag(111) the phase relaxation length can be as large as 66 and 60 nm, respectively, at low temperatures [see, e.g., 10.1103/PhysRevB.59.15926
-
In the case of Cu(111) and Ag(111) the phase relaxation length can be as large as 66 and 60 nm, respectively, at low temperatures [see, e.g., O. Jeandupeux, L. Burgi, A. Hirstein, H. Brune, and K. Kern, Phys. Rev. B 59, 15926 (1999)]. 10.1103/PhysRevB.59.15926
-
(1999)
Phys. Rev. B
, vol.59
, pp. 15926
-
-
Jeandupeux, O.1
Burgi, L.2
Hirstein, A.3
Brune, H.4
Kern, K.5
|