-
1
-
-
73249130677
-
Rotated factorial designs for computer experiments
-
Department of Statistics, The Pennsylvania State University, University Park, PA
-
Beattie, S. D. and Lin, D. K. J. (1998). Rotated factorial designs for computer experiments. Technical Report TR#98-02, Department of Statistics, The Pennsylvania State University, University Park, PA.
-
(1998)
Technical Report TR#98-02
-
-
Beattie, S.D.1
Lin, D.K.J.2
-
2
-
-
33745632248
-
Rotated factorial designs for computer experiments
-
Beattie, S. D. and Lin, D. K. J. (2004). Rotated factorial designs for computer experiments. J. Chin. Statist. Assoc. 42, 289-308.
-
(2004)
J. Chin. Statist. Assoc.
, vol.42
, pp. 289-308
-
-
Beattie, S.D.1
Lin, D.K.J.2
-
4
-
-
84909574881
-
A basis for the selection of a response surface design
-
Box, G. E. P. and Draper, N. R. (1959). A basis for the selection of a response surface design. J. Am. Statist. Assoc. 54, 622-654.
-
(1959)
J. Am. Statist. Assoc.
, vol.54
, pp. 622-654
-
-
Box, G.E.P.1
Draper, N.R.2
-
5
-
-
0010550849
-
Rotation designs for experiments in high bias situations
-
Bursztyn, D. and Steinberg, D. M. (2002). Rotation designs for experiments in high bias situations. J. Statist. Plann. Inference 97, 399-414.
-
(2002)
J. Statist. Plann. Inference
, vol.97
, pp. 399-414
-
-
Bursztyn, D.1
Steinberg, D.M.2
-
6
-
-
11944264981
-
Optimal and orthogonal Latin hypercube designs for computer experiments
-
Butler, N. A. (2001). Optimal and orthogonal Latin hypercube designs for computer experiments. Biometrika 88, 847-857.
-
(2001)
Biometrika
, vol.88
, pp. 847-857
-
-
Butler, N.A.1
-
7
-
-
43049116178
-
Orthogonal-maximin Latin hypercube designs
-
Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs. Statist. Sinica 18, 171-186.
-
(2008)
Statist. Sinica
, vol.18
, pp. 171-186
-
-
Joseph, V.R.1
Hung, Y.2
-
8
-
-
0018468345
-
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
-
McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239-245.
-
(1979)
Technometrics
, vol.21
, pp. 239-245
-
-
McKay, M.D.1
Beckman, R.J.2
Conover, W.J.3
-
9
-
-
0000444881
-
Orthogonal arrays for computer experiments, integration and visualization
-
Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica. 2, 439-452.
-
(1992)
Statist. Sinica.
, vol.2
, pp. 439-452
-
-
Owen, A.B.1
-
10
-
-
21844489855
-
Controlling correlation in Latin hypercube samples
-
Owen, A. B. (1994). Controlling correlation in Latin hypercube samples. J. Am. Statist. Assoc. 89, 1517-1522.
-
(1994)
J. Am. Statist. Assoc.
, vol.89
, pp. 1517-1522
-
-
Owen, A.B.1
-
11
-
-
33745628754
-
A construction method for orthogonal Latin hypercube designs
-
Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube designs. Biometrika 93, 279-288.
-
(2006)
Biometrika
, vol.93
, pp. 279-288
-
-
Steinberg, D.M.1
Lin, D.K.J.2
-
12
-
-
21344480032
-
Orthogonal array-based Latin hypercubes
-
Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Am. Statist. Assoc. 88, 1392- 1397.
-
(1993)
J. Am. Statist. Assoc.
, vol.88
, pp. 1392-1397
-
-
Tang, B.1
-
13
-
-
0032375116
-
Selecting Latin hypercubes using correlation criteria
-
Tang, B. (1998). Selecting Latin hypercubes using correlation criteria. Statist. Sinica 8, 965-977. (Pubitemid 128480630)
-
(1998)
Statistica Sinica
, vol.8
, Issue.3
, pp. 965-977
-
-
Tang, B.1
-
14
-
-
0032286861
-
Orthogonal column Latin hypercubes and their application in computer experiments
-
Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer experiments. J. Am. Statist. Assoc. 93, 1430-1439.
-
(1998)
J. Am. Statist. Assoc.
, vol.93
, pp. 1430-1439
-
-
Ye, K.Q.1
|