메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1-8

Archipelago: Nonparametric Bayesian semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

DIRICHLET PROCESS MIXTURE MODEL; GAUSSIAN PROCESSES; GENERATIVE MODEL; INFERENCE METHODS; MARKOV CHAIN MONTE CARLO ALGORITHMS; MULTI-CLASS; NON-PARAMETRIC BAYESIAN; PROBABILITY DENSITIES; REAL-WORLD; SEMI-SUPERVISED LEARNING; UNLABELED DATA;

EID: 71149110678     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (17)
  • 2
    • 0012018345 scopus 로고
    • Comparison of classifiers in high dimensional settings
    • 92-02, James Cook University
    • Aeberhard, S., Coomans, D., & de Vel, O. (1992). Comparison of classifiers in high dimensional settings (Technical Report 92-02). James Cook University.
    • (1992) Technical Report
    • Aeberhard, S.1    Coomans, D.2    de Vel, O.3
  • 7
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • Girolami, M., & Rogers, S. (2006). Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18, 1790-1817.
    • (2006) Neural Computation , vol.18 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 9
    • 33745612435 scopus 로고    scopus 로고
    • An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
    • Møller, J., Pettitt, A. N., Reeves, R., & Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika, 93, 451-458.
    • (2006) Biometrika , vol.93 , pp. 451-458
    • Møller, J.1    Pettitt, A.N.2    Reeves, R.3    Berthelsen, K.K.4
  • 11
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
    • 9702, Department of Statistics, University of Toronto
    • Neal, R. M. (1997). Monte Carlo implementation of Gaussian process models for Bayesian regression and classification (Technical Report 9702). Department of Statistics, University of Toronto.
    • (1997) Technical Report
    • Neal, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.