메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1217-1224

Discovering options from example trajectories

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENT DOMAINS; LEARNING PROCESS; NOVEL TECHNIQUES; OPTIMAL TRAJECTORIES; PROBLEM DECOMPOSITION;

EID: 71149102986     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (11)
  • 1
    • 0001806701 scopus 로고    scopus 로고
    • The MAXQ method for hierarchical reinforcement learning
    • Dietterich, T. G. (1998). The MAXQ method for hierarchical reinforcement learning. Intl. Conf. on Machine Learning (pp. 118-126).
    • (1998) Intl. Conf. on Machine Learning , pp. 118-126
    • Dietterich, T.G.1
  • 2
    • 0013465036 scopus 로고    scopus 로고
    • Discovering hierarchy in reinforcement learning with hexq
    • Hengst, B. (2002). Discovering hierarchy in reinforcement learning with hexq. Intl. Conf. on Machine Learning (pp. 243-250).
    • (2002) Intl. Conf. on Machine Learning , pp. 243-250
    • Hengst, B.1
  • 3
    • 33750705246 scopus 로고    scopus 로고
    • Causal graph based decomposition of factored mdps
    • Jonsson, A., & Barto, A. (2006). Causal graph based decomposition of factored mdps. Journal of Machine Learning Research, 7, 2259-2301.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2259-2301
    • Jonsson, A.1    Barto, A.2
  • 5
    • 0013465187 scopus 로고    scopus 로고
    • Automatic discovery of subgoals in reinforcement learning using diverse density
    • McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement learning using diverse density. Intl. Conf on Machine Learning (pp. 361-368).
    • (2001) Intl. Conf on Machine Learning , pp. 361-368
    • McGovern, A.1    Barto, A.G.2
  • 8
    • 14344250461 scopus 로고    scopus 로고
    • Policyblocks: An algorithm for creating useful macro-actions in reinforcement learning
    • Pickett, M., & Barto, A. G. (2002). Policyblocks: An algorithm for creating useful macro-actions in reinforcement learning. Intl. Conf. on Machine Learning (pp. 506-513).
    • (2002) Intl. Conf. on Machine Learning , pp. 506-513
    • Pickett, M.1    Barto, A.G.2
  • 10
    • 0033170372 scopus 로고    scopus 로고
    • Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
    • Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181-211.
    • (1999) Artificial Intelligence , vol.112 , pp. 181-211
    • Sutton, R.S.1    Precup, D.2    Singh, S.P.3
  • 11
    • 0006455454 scopus 로고
    • Constructing suffix-trees on-line in linear time
    • Ukkonen., E. (1992). Constructing suffix-trees on-line in linear time. Algorithms, 1, 484-492.
    • (1992) Algorithms , vol.1 , pp. 484-492
    • Ukkonen, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.