메뉴 건너뛰기




Volumn , Issue , 2009, Pages 987-995

Toward autonomic grids: Analyzing the job flow with affinity streaming

Author keywords

Afinity propagation; Autonomic computing; Online clus tering

Indexed keywords

AFINITY PROPAGATION; AUTONOMIC COMPUTING; CHANGE DETECTION; DATA ITEMS; DATA SETS; DATA STREAMING; NONSTATIONARY DATA; ONLINE CLUS- TERING; SYSTEM ADMINISTRATORS;

EID: 71049172937     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557126     Document Type: Conference Paper
Times cited : (21)

References (25)
  • 2
    • 33745434639 scopus 로고    scopus 로고
    • F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data stream with noise. In SIAM Conference on Data Mining (SDM), pages 326{337, 2006.
    • F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data stream with noise. In SIAM Conference on Data Mining (SDM), pages 326{337, 2006.
  • 3
    • 34548803489 scopus 로고    scopus 로고
    • Conquering the divide: Continuous clustering of distributed data streams
    • G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Continuous clustering of distributed data streams. In ICDE, pages 1036{1045, 2007.
    • (2007) ICDE, pages 1036{1045
    • Cormode, G.1    Muthukrishnan, S.2    Zhuang, W.3
  • 4
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise: The uniqueness of a good optimum for k-means
    • M. Ester. A density-based algorithm for discovering clusters in large spatial databases with noise: the uniqueness of a good optimum for k-means. In SIGKDD, pages 226{231, 1996.
    • (1996) SIGKDD, pages 226{231
    • Ester, M.1
  • 6
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • 315:972{976
    • B. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972{976, 2007.
    • (2007) Science
    • Frey, B.1    Dueck, D.2
  • 7
    • 70350649252 scopus 로고    scopus 로고
    • Accurate decision trees for mining highspeed data streams
    • J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining highspeed data streams. In SIGMOD, pages 523{528, 2003.
    • (2003) SIGMOD, pages 523{528
    • Gama, J.1    Rocha, R.2    Medas, P.3
  • 11
    • 77956891289 scopus 로고
    • Inference about the change-point from cumulative sum tests
    • 58:509{523
    • D. Hinkley. Inference about the change-point from cumulative sum tests. Biometrika, 58:509{523, 1971.
    • (1971) Biometrika
    • Hinkley, D.1
  • 13
    • 35748982103 scopus 로고    scopus 로고
    • Clustering by soft-constraint afinity propagation: Applications to gene-expression data
    • M. Leone, Sumedha, and M. Weigt. Clustering by soft-constraint afinity propagation: Applications to gene-expression data. Bioinformatics, 23:2708, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2708
    • Leone, M.1    Sumedha2    Weigt, M.3
  • 14
    • 33749236636 scopus 로고    scopus 로고
    • The uniqueness of a good optimum for k-means
    • M. Meila. The uniqueness of a good optimum for k-means. In ICML, pages 625{632, 2006.
    • (2006) ICML, pages 625{632
    • Meila, M.1
  • 16
    • 71049124758 scopus 로고    scopus 로고
    • E. Page. Continuous inspection schemes. Biometrika, 41:100{115, 1954.
    • E. Page. Continuous inspection schemes. Biometrika, 41:100{115, 1954.
  • 18
    • 71049187589 scopus 로고    scopus 로고
    • C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learning. MIT Press, 01 2006.
    • C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learning. MIT Press, 01 2006.
  • 19
    • 26844454842 scopus 로고    scopus 로고
    • Adaptive diagnosis in distributed systems
    • 16:1088{1109
    • I. Rish, M. Brodie, and S. M. et al. Adaptive diagnosis in distributed systems. IEEE Trans. on Neural Networks, 16:1088{1109, 2005.
    • (2005) IEEE Trans. on Neural Networks
    • Rish, I.1    Brodie, M.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • 6:461{464
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461{464, 1978.
    • (1978) The Annals of Statistics
    • Schwarz, G.1
  • 21
    • 59449099235 scopus 로고    scopus 로고
    • Global optimization of expensive-to-evaluate functions: An empirical comparison of two sampling criteria
    • J. Villemonteix, E. Vazquez, M. Sidorkiewicz and E. Walter. Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria. Journal of Global Optimization, vol 43 (2-3), p.373-389, 2009
    • (2009) Journal of Global Optimization , vol.43 , Issue.2-3 , pp. 373-389
    • Villemonteix, J.1    Vazquez, E.2    Sidorkiewicz, M.3    Walter, E.4
  • 23
    • 50849110532 scopus 로고    scopus 로고
    • J. Andreeva, B. Gaidioz, J. Herrala, and et al. Dashboard for the LHC experiments. Journal of Physics: Conference Series, 119, 2008.
    • J. Andreeva, B. Gaidioz, J. Herrala, and et al. Dashboard for the LHC experiments. Journal of Physics: Conference Series, vol. 119, 2008.
  • 24
    • 34548369891 scopus 로고    scopus 로고
    • Real Time Monitor: http://gridportal.hep.ph.ic.ac.uk/rtm/.
    • Real Time Monitor
  • 25
    • 71049194753 scopus 로고    scopus 로고
    • X. Zhang, C. Furtlehner, and M. Sebag. INRIA research report in progress
    • X. Zhang, C. Furtlehner, and M. Sebag. INRIA research report in progress.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.