메뉴 건너뛰기




Volumn 4, Issue , 2009, Pages 490-494

A dispersion-based PAA representation for time series

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; HIGH DIMENSIONALITY; PIECEWISE AGGREGATE APPROXIMATION; STANDARD DEVIATION; TIME-SERIES DATA;

EID: 71049156242     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSIE.2009.622     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 1
    • 85006228721 scopus 로고
    • Efficient similarity search in sequence databases
    • Evanston, IL, USA, October
    • R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. In Proc. 4th Int. Conf. FODO, pages 69-84, Evanston, IL, USA, October 1993.
    • (1993) Proc. 4th Int. Conf. FODO , pp. 69-84
    • Agrawal, R.1    Faloutsos, C.2    Swami, A.3
  • 2
    • 71049151824 scopus 로고    scopus 로고
    • D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In Proc. AAAI Workshop on Knowledge Discovery in Databases, pages 229-248, 1994.
    • D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In Proc. AAAI Workshop on Knowledge Discovery in Databases, pages 229-248, 1994.
  • 3
    • 0032688141 scopus 로고    scopus 로고
    • K. Chan and A. W. Fu. Efficient time series matching by wavelets. In Proc. ICDE, pages 126-133, Sydney, Australia, March 1999.
    • K. Chan and A. W. Fu. Efficient time series matching by wavelets. In Proc. ICDE, pages 126-133, Sydney, Australia, March 1999.
  • 4
    • 2142647791 scopus 로고    scopus 로고
    • Time series similarity measures, tutorial notes
    • Boston, MA, USA, August
    • D. Gunopoulos and G. Das. Time series similarity measures, tutorial notes. In Proc. ACM SIGKDD, pages 243-307, Boston, MA, USA, August 2000.
    • (2000) Proc. ACM SIGKDD , pp. 243-307
    • Gunopoulos, D.1    Das, G.2
  • 6
    • 71049162802 scopus 로고    scopus 로고
    • E. Keogh. http://www.cs.ucr.edu/~eamonn/time-series-data.
    • Keogh, E.1
  • 7
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • February
    • E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 3(3):263-286, February 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 8
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • October
    • E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery, Springer Netherlands, 7(4):349-371, October 2003.
    • (2003) Data Mining and Knowledge Discovery, Springer Netherlands , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 9
    • 0031166708 scopus 로고    scopus 로고
    • Efficiently supporting ad hoc queries in large datasets of time sequences
    • Tucson, AZ, USA, May
    • F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large datasets of time sequences. In Proc. ACM SIGMOD, pages 289-300, Tucson, AZ, USA, May 1997.
    • (1997) Proc. ACM SIGMOD , pp. 289-300
    • Korn, F.1    Jagadish, H.2    Faloutsos, C.3
  • 10
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • San Diego CA, USA, June
    • J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In Proc. DMKD, pages 2-11, San Diego CA, USA, June 2000.
    • (2000) Proc. DMKD , pp. 2-11
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 11
    • 84890514466 scopus 로고    scopus 로고
    • B. Lkhagva, Y. Suzuki, and K. Kawagoe. New time series data representation esax for financial applications. In Proc. ICDEW, pages 115-117, Atlanta, GA, USA, April 2006.
    • B. Lkhagva, Y. Suzuki, and K. Kawagoe. New time series data representation esax for financial applications. In Proc. ICDEW, pages 115-117, Atlanta, GA, USA, April 2006.
  • 12
    • 33744973448 scopus 로고    scopus 로고
    • Feature-based classification of time-series data
    • N. Mastorakis and S. D. Nikolopoulos, editors, Nova Science Publishers, Inc, Commack, NY, USA
    • A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of time-series data. In N. Mastorakis and S. D. Nikolopoulos, editors, Information processing and technology, pages 49-61. Nova Science Publishers, Inc., Commack, NY, USA, 2001.
    • (2001) Information processing and technology , pp. 49-61
    • Nanopoulos, A.1    Alcock, R.2    Manolopoulos, Y.3
  • 13
    • 71049175998 scopus 로고    scopus 로고
    • H. Shatkay. Approximate queries and representations for large data sequences. Technical Report cs-95-03, Department of Computer Science, Brown University, 1995.
    • H. Shatkay. Approximate queries and representations for large data sequences. Technical Report cs-95-03, Department of Computer Science, Brown University, 1995.
  • 14
    • 0008693810 scopus 로고    scopus 로고
    • Fast time sequence indexing for arbitrary lp norms
    • Cairo, Egypt, September
    • B. K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In Proc. VLDB, pages 385-394, Cairo, Egypt, September 2000.
    • (2000) Proc. VLDB , pp. 385-394
    • Yi, B.K.1    Faloutsos, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.