메뉴 건너뛰기




Volumn 1, Issue 4, 2009, Pages 271-279

Optimal incremental learning under covariate shift

Author keywords

Covariate shift; Generalization capabilities; Incremental learning; Model selection; Radial basis function neural network (RBFNN); Student's t distribution

Indexed keywords


EID: 70949100017     PISSN: 18659284     EISSN: 18659292     Source Type: Journal    
DOI: 10.1007/s12293-009-0018-7     Document Type: Article
Times cited : (9)

References (21)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19(6): 716-723.
    • (1974) IEEE Trans Autom Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0034146910 scopus 로고    scopus 로고
    • Neural networks with a self-refreshing memory: Knowledge transfer in sequential learning tasks without catastrophic forgetting
    • Ans B, Roussert S (2000) Neural networks with a self-refreshing memory: knowledge transfer in sequential learning tasks without catastrophic forgetting. Connect Sci 12(1): 1-19.
    • (2000) Connect Sci , vol.12 , Issue.1 , pp. 1-19
    • Ans, B.1    Roussert, S.2
  • 4
    • 0018918224 scopus 로고
    • A convergence theorem for the fuzzy isodata clustering algorithms
    • Bezdek J (1980) A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans Pattern Anal Mach Intell 2: 1-8.
    • (1980) IEEE Trans Pattern Anal Mach Intell , vol.2 , pp. 1-8
    • Bezdek, J.1
  • 5
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Roy Stat Soc B 39(1): 1-38.
    • (1977) J Roy Stat Soc B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 0347683832 scopus 로고    scopus 로고
    • Pseudo-recurrent connectionist networks: An approach to the "sensitivity stability" dilemma
    • French RM (1997) Pseudo-recurrent connectionist networks: an approach to the "sensitivity stability" dilemma. Connect Sci 9(4): 353-379.
    • (1997) Connect Sci , vol.9 , Issue.4 , pp. 353-379
    • French, R.M.1
  • 7
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Hidetoshi S (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plan Infer 90(2): 227-244.
    • (2000) J Stat Plan Infer , vol.90 , Issue.2 , pp. 227-244
    • Hidetoshi, S.1
  • 8
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern 31(6): 902-918.
    • (2001) IEEE Trans Syst Man Cybern , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 9
    • 67349191003 scopus 로고    scopus 로고
    • A proposition on memes and meta-memes in computing for higher-order learning
    • Meuth R, Lim MH, Ong YS, II DCW (2009) A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput 1: 85-100.
    • (2009) Memetic Comput , vol.1 , pp. 85-100
    • Meuth, R.1    Lim, M.H.2    Ong, Y.S.3    Ii, D.C.W.4
  • 10
    • 0000672424 scopus 로고
    • Fast learning in neural networks of locally-tuned processing units
    • Moody J, Darken CJ (1989) Fast learning in neural networks of locally-tuned processing units. Neural Comput 1: 281-294.
    • (1989) Neural Comput , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 11
    • 27744441220 scopus 로고    scopus 로고
    • Incremental learning of feature space and classifier for face recognition
    • Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of feature space and classifier for face recognition. Neural Netw 18: 575-584.
    • (2005) Neural Netw , vol.18 , pp. 575-584
    • Ozawa, S.1    Toh, S.L.2    Abe, S.3    Pang, S.4    Kasabov, N.5
  • 12
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • Platt J (1991) A resource allocating network for function interpolation. Neural Comput 3(2): 213-225.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 13
    • 0001108227 scopus 로고    scopus 로고
    • Constructive incremental learning from only local information
    • Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10(8): 2047-2084.
    • (1998) Neural Comput , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 14
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF (1991) A general regression neural network. IEEE Trans Neural Networks 2(6): 568-576.
    • (1991) IEEE Trans Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 15
    • 33748430945 scopus 로고    scopus 로고
    • A new artmap-based neural network for incremental learning
    • Su MC, Lee J, Hsieh KL (2006) A new artmap-based neural network for incremental learning. Neurocomputing 69: 2284-2300.
    • (2006) Neurocomputing , vol.69 , pp. 2284-2300
    • Su, M.C.1    Lee, J.2    Hsieh, K.L.3
  • 17
    • 0007957206 scopus 로고
    • Active data selection and subsequent revision for sequential learning with neural networks
    • Yamakawa H, Masumoto D, Kimoto T, Nagata S (1994) Active data selection and subsequent revision for sequential learning with neural networks. World Congr Neural Netw (WCNN' 94) 3: 661-666.
    • (1994) World Congr Neural Netw (WCNN' 94) , vol.3 , pp. 661-666
    • Yamakawa, H.1    Masumoto, D.2    Kimoto, T.3    Nagata, S.4
  • 18
    • 70349128949 scopus 로고    scopus 로고
    • Covariate Shift and Incremental Learning
    • ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers
    • Yamauchi K (2008) Covariate shift and incremental learning. In: Advances in neuro-information processing 15th international conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part I, pp 1154-1162.
    • (2008) Advances in Neuro-Information Processing 15th International Conference , Issue.PART I , pp. 1154-1162
    • Yamauchi, K.1
  • 19
    • 34247133096 scopus 로고    scopus 로고
    • Incremental learning and model selection for radial basis function network through sleep
    • Yamauchi K, Hayami J (2007) Incremental learning and model selection for radial basis function network through sleep. IEICE Trans Inform Syst E90-D(4): 722-735.
    • (2007) IEICE Trans Inform Syst , vol.E90-D , Issue.4 , pp. 722-735
    • Yamauchi, K.1    Hayami, J.2
  • 20
    • 0033336432 scopus 로고    scopus 로고
    • Incremental learning methods with retrieving interfered patterns
    • Yamauchi K, Yamaguchi N, Ishii N (1999) Incremental learning methods with retrieving interfered patterns. IEEE Trans Neural Netw 10(6): 1351-1365.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.6 , pp. 1351-1365
    • Yamauchi, K.1    Yamaguchi, N.2    Ishii, N.3
  • 21
    • 0026929368 scopus 로고
    • Study on optimization of grinding conditions using neural networks - a method of additional learning
    • Yoneda T, Yamanaka M, Kakazu Y (1992) Study on optimization of grinding conditions using neural networks - a method of additional learning. J Japan Soc Prec Eng/Seimitsu kogakukaishi 58(10): 1707-1712.
    • (1992) J Japan Soc Prec Eng/Seimitsu Kogakukaishi , vol.58 , Issue.10 , pp. 1707-1712
    • Yoneda, T.1    Yamanaka, M.2    Kakazu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.