메뉴 건너뛰기




Volumn 1, Issue 4, 2009, Pages 281-290

Solving maximum fuzzy clique problem with neural networks and its applications

Author keywords

Collusion set; Fuzzy logic; Gene expression; Maximum fuzzy clique problem; Neural networks; Stock flow graph

Indexed keywords


EID: 70949089242     PISSN: 18659284     EISSN: 18659292     Source Type: Journal    
DOI: 10.1007/s12293-009-0019-6     Document Type: Article
Times cited : (4)

References (25)
  • 2
    • 70349089696 scopus 로고    scopus 로고
    • A neuro-GA approach for the maximum fuzzy clique problem
    • M. Köeppen, N. Kasabov, and G. Coghill (Eds.), Heidelberg: Springer
    • Bandyopadhyay S, Bhattacharyya M (2009) A neuro-GA approach for the maximum fuzzy clique problem. In: Köeppen M, Kasabov N, Coghill G (eds) Advances in neuro-information processing, LNCS 5506. Springer, Heidelberg, pp 605-612.
    • (2009) Advances in Neuro-Information Processing, LNCS 5506 , pp. 605-612
    • Bandyopadhyay, S.1    Bhattacharyya, M.2
  • 3
    • 0024681911 scopus 로고
    • Experiments in quadratic 0-1 programming
    • Barahona F, Junger M, Reinelt G (1989) Experiments in quadratic 0-1 programming. Math Program 44(2): 127-137.
    • (1989) Math Program , vol.44 , Issue.2 , pp. 127-137
    • Barahona, F.1    Junger, M.2    Reinelt, G.3
  • 7
    • 65149101767 scopus 로고    scopus 로고
    • A selection of useful theoretical tools for the design and analysis of optimization heuristics
    • Gutin G, Karapetyan D (2009) A selection of useful theoretical tools for the design and analysis of optimization heuristics. J Memetic Comput 1(1): 25-34.
    • (2009) J Memetic Comput , vol.1 , Issue.1 , pp. 25-34
    • Gutin, G.1    Karapetyan, D.2
  • 8
    • 0000109157 scopus 로고    scopus 로고
    • Clique is hard to approximate within n1-ε
    • Håstad J (1999) Clique is hard to approximate within n1-ε. Acta Math 182: 105-142.
    • (1999) Acta Math , vol.182 , pp. 105-142
    • Håstad, J.1
  • 9
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52: 141-152.
    • (1985) Biol Cybern , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 12
    • 0026628404 scopus 로고
    • A parallel improvement algorithm for the bipartite subgraph problem
    • Lee KC, Funabiki N, Takefuji Y (1992) A parallel improvement algorithm for the bipartite subgraph problem. IEEE Trans Neural Netw 3(1): 139-145.
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.1 , pp. 139-145
    • Lee, K.C.1    Funabiki, N.2    Takefuji, Y.3
  • 16
    • 38749116630 scopus 로고    scopus 로고
    • Collusion set detection using graph clustering
    • Palshikar GK, Apte MM (2008) Collusion set detection using graph clustering. Data Mining Knowl Discov 16: 135-164.
    • (2008) Data Mining Knowl Discov , vol.16 , pp. 135-164
    • Palshikar, G.K.1    Apte, M.M.2
  • 18
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20: 53-65.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.1
  • 19
    • 1542471408 scopus 로고    scopus 로고
    • Maximum neural network with nonlinear self-feedback for maximum clique problem
    • Wang J, Tang Z, Wang R (2004) Maximum neural network with nonlinear self-feedback for maximum clique problem. Neurocomputing 57: 485-492.
    • (2004) Neurocomputing , vol.57 , pp. 485-492
    • Wang, J.1    Tang, Z.2    Wang, R.3
  • 20
    • 3142726978 scopus 로고    scopus 로고
    • A chaotic maximum neural network for maximum clique problem
    • Wang J, Tang Z, Wang R (2004) A chaotic maximum neural network for maximum clique problem. IEICE Trans Inf Syst E87-D(7): 1953-1961.
    • (2004) IEICE Trans Inf Syst , vol.E87-D , Issue.7 , pp. 1953-1961
    • Wang, J.1    Tang, Z.2    Wang, R.3
  • 23
    • 70349121834 scopus 로고    scopus 로고
    • An improved chaotic maximum neural network for maximum clique problem
    • Yang G, Tang Z, Yi J (2007) An improved chaotic maximum neural network for maximum clique problem. Int J Comput Sci Netw Secur 7(2): 1-7.
    • (2007) Int J Comput Sci Netw Secur , vol.7 , Issue.2 , pp. 1-7
    • Yang, G.1    Tang, Z.2    Yi, J.3
  • 24
    • 63849249764 scopus 로고    scopus 로고
    • A shrinking chaotic maximum neural network for maximum clique problem
    • Yi J, Yang G, Gao S, Tang Z (2009) A shrinking chaotic maximum neural network for maximum clique problem. Int J Innov Comput Inf Control 5(5): 1213-1229.
    • (2009) Int J Innov Comput Inf Control , vol.5 , Issue.5 , pp. 1213-1229
    • Yi, J.1    Yang, G.2    Gao, S.3    Tang, Z.4
  • 25
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.