-
1
-
-
0030413554
-
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
-
S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 2-11, 1996.
-
(1996)
Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci.
, pp. 2-11
-
-
Arora, S.1
-
2
-
-
0032156828
-
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
-
S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753-782, 1998.
-
(1998)
J. ACM
, vol.45
, Issue.5
, pp. 753-782
-
-
Arora, S.1
-
3
-
-
21044440128
-
Approximation schemes for degree-restricted MST and red-blue separation problems
-
S. Arora and K. Chang. Approximation schemes for degree-restricted MST and red-blue separation problems. Algorithmica, 40(3):189-210, 2004.
-
(2004)
Algorithmica
, vol.40
, Issue.3
, pp. 189-210
-
-
Arora, S.1
Chang, K.2
-
4
-
-
4344634500
-
Euclidean bounded-degree spanning tree ratios
-
T. M. Chan. Euclidean bounded-degree spanning tree ratios. Discrete Comput. Geom., 32(2):177-194, 2004.
-
(2004)
Discrete Comput. Geom.
, vol.32
, Issue.2
, pp. 177-194
-
-
Chan, T.M.1
-
7
-
-
0038192551
-
A network-flow technique for finding low-weight bounded-degree spanning trees
-
S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young. A network-flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms, 24(2):310-324, 1997.
-
(1997)
J. Algorithms
, vol.24
, Issue.2
, pp. 310-324
-
-
Fekete, S.P.1
Khuller, S.2
Klemmstein, M.3
Raghavachari, B.4
Young, N.5
-
8
-
-
0000727336
-
The rectilinear Steiner tree problem is NP-complete
-
M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math., 32:826-834, 1977.
-
(1977)
SIAM J. Appl. Math.
, vol.32
, pp. 826-834
-
-
Garey, M.R.1
Johnson, D.S.2
-
10
-
-
60649110437
-
Degree-bounded minimum spanning trees
-
R. Jothi and B. Raghavachari. Degree-bounded minimum spanning trees. Discrete Appl. Math., 157(5):960-970, 2009.
-
(2009)
Discrete Appl. Math.
, vol.157
, Issue.5
, pp. 960-970
-
-
Jothi, R.1
Raghavachari, B.2
-
11
-
-
0030128523
-
Low-degree spanning trees of small weight
-
S. Khuller, B. Raghavachari, and N. Young. Low-degree spanning trees of small weight. SIAM J. Comput., 25(2):355-368, 1996.
-
(1996)
SIAM J. Comput.
, vol.25
, Issue.2
, pp. 355-368
-
-
Khuller, S.1
Raghavachari, B.2
Young, N.3
-
12
-
-
0032667193
-
Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems
-
J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28:1298-1309, 1999.
-
(1999)
SIAM J. Comput.
, vol.28
, pp. 1298-1309
-
-
Mitchell, J.S.B.1
-
13
-
-
21144470704
-
Transitions in geometric minimum spanning trees
-
C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8(3):265-293, 1992.
-
(1992)
Discrete Comput. Geom.
, vol.8
, Issue.3
, pp. 265-293
-
-
Monma, C.1
Suri, S.2
-
14
-
-
19044391501
-
The Euclidean traveling salesman problem is NP-complete
-
C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci., 4:237-244, 1977.
-
(1977)
Theoret. Comput. Sci.
, vol.4
, pp. 237-244
-
-
Papadimitriou, C.H.1
-
15
-
-
0037854822
-
On two geometric problems related to the travelling salesman problem
-
C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the travelling salesman problem. J. Algorithms, 5:231-246, 1984.
-
(1984)
J. Algorithms
, vol.5
, pp. 231-246
-
-
Papadimitriou, C.H.1
Vazirani, U.V.2
-
16
-
-
0039346903
-
Algorithms for area-efficient orthogonal drawings
-
A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom. Theory Appl., 9(1-2):83-110, 1998.
-
(1998)
Comput. Geom. Theory Appl.
, vol.9
, Issue.1-2
, pp. 83-110
-
-
Papakostas, A.1
Tollis, I.G.2
-
17
-
-
5244350263
-
Low-degree minimum spanning trees
-
G. Robins and J. S. Salowe. Low-degree minimum spanning trees. Discrete Comput. Geom., 14(2):151-165, 1995.
-
(1995)
Discrete Comput. Geom.
, vol.14
, Issue.2
, pp. 151-165
-
-
Robins, G.1
Salowe, J.S.2
-
18
-
-
0024735684
-
Planar grid embedding in linear time
-
R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230-1234, 1989.
-
(1989)
IEEE Trans. Circuits Syst.
, vol.36
, Issue.9
, pp. 1230-1234
-
-
Tamassia, R.1
Tollis, I.G.2
|