메뉴 건너뛰기




Volumn 20, Issue 2, 2009, Pages 71-93

In the use of parametric and nonparametric algorithms for the nondestructive evaluation of concrete structures

Author keywords

Inverse problems; Neural networks; Nondestructive testing; Numerical modeling; Optimization; Particle; Swarm

Indexed keywords

BURIED CYLINDERS; COMPUTING TIME; CONCRETE STRUCTURES; DIELECTRIC CHARACTERISTICS; IMAGING METHOD; NON DESTRUCTIVE EVALUATION; NON DESTRUCTIVE TESTING; NON-PARAMETRIC ALGORITHM; NUMERICAL MODELING; OBJECT CHARACTERISTICS; PARTICLE; PARTICLE SWARM; PERFORMANCE PARAMETERS;

EID: 70749161302     PISSN: 09349847     EISSN: 14322110     Source Type: Journal    
DOI: 10.1080/09349840802513242     Document Type: Article
Times cited : (8)

References (19)
  • 5
    • 12844258778 scopus 로고    scopus 로고
    • The institute of Electrical Engineers, London
    • D. J. Daniels. Ground Penetrating Radar. The institute of Electrical Engineers, London (2004).
    • (2004) Ground Penetrating Radar
    • Daniels, D.J.1
  • 6
    • 44049087526 scopus 로고    scopus 로고
    • Published by Geophysical Survey Systems, Inc, North Salem, NH 13
    • GSSI Handbook For Radar Testing of Concrete. Published by Geophysical Survey Systems, Inc., North Salem, NH 13 (2001).
    • (2001) GSSI Handbook For Radar Testing of Concrete
  • 7
    • 0036630843 scopus 로고    scopus 로고
    • Time-Domain Inverse Scattering Method for Cross-Borehole Radar Imaging
    • H. Jia, T. Takenaka, and T. Tanaka. Time-Domain Inverse Scattering Method for Cross-Borehole Radar Imaging. IEEE Trans on Geoscience and Remote Sensing 40(7):1640-1647 (2002).
    • (2002) IEEE Trans on Geoscience and Remote Sensing , vol.40 , Issue.7 , pp. 1640-1647
    • Jia, H.1    Takenaka, T.2    Tanaka, T.3
  • 10
    • 0002045610 scopus 로고    scopus 로고
    • Diffraction tomography for multimonostatic ground penetrating radar imaging
    • R. Demining and A. J. Devaney. Diffraction tomography for multimonostatic ground penetrating radar imaging. Inv. Probl. 13:29-45 (1997).
    • (1997) Inv. Probl , vol.13 , pp. 29-45
    • Demining, R.1    Devaney, A.J.2
  • 11
    • 4043131801 scopus 로고    scopus 로고
    • Neural Networks Trained by Scattered Electromagnetic Data for GPR Applications
    • S. Caorsi and G. Cevini. Neural Networks Trained by Scattered Electromagnetic Data for GPR Applications. 2d International Workshop on Advanced GPR, 14-16 (2003).
    • (2003) 2d International Workshop on Advanced GPR , pp. 14-16
    • Caorsi, S.1    Cevini, G.2
  • 12
    • 12844261694 scopus 로고    scopus 로고
    • An Electromagnetic Approach Based on Neural Networks for the GPR Investigation of Buried Cylinders
    • S. Caorsi and G. Cevini. An Electromagnetic Approach Based on Neural Networks for the GPR Investigation of Buried Cylinders. IEEE Geoscience and Remote Sensing Letters 2:3-7 (2005).
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , pp. 3-7
    • Caorsi, S.1    Cevini, G.2
  • 15
    • 0003807773 scopus 로고    scopus 로고
    • 3rd ed, Prentice-Hall, Inc, Upper Saddle River, NJ, USA
    • Simon Haykin Adaptive filter theory (3rd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1996).
    • (1996) Adaptive filter theory
    • Haykin, S.1
  • 16
    • 0033225947 scopus 로고    scopus 로고
    • Artificial Neural Networks for Analyzing Concrete Airfield Pavements Serving the Boeing B-777 Aircraft
    • H. Ceylan, E. Tutumluer, and E. J. Barenberg. Artificial Neural Networks for Analyzing Concrete Airfield Pavements Serving the Boeing B-777 Aircraft. Journal of the Transportation Research Board 1684 110-117 (2000).
    • (2000) Journal of the Transportation Research Board , vol.1684 , pp. 110-117
    • Ceylan, H.1    Tutumluer, E.2    Barenberg, E.J.3
  • 17
    • 70749134351 scopus 로고    scopus 로고
    • R. W. Meier Backcalculation of Flexible Pavement Moduli from Falling Weight Deflectometer Data Using Artificial Neural Networks. Ph.D. Dissertation, Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, March (1995).
    • R. W. Meier Backcalculation of Flexible Pavement Moduli from Falling Weight Deflectometer Data Using Artificial Neural Networks. Ph.D. Dissertation, Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, March (1995).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.