메뉴 건너뛰기




Volumn 60, Issue 11, 2009, Pages 2820-2826

Multi-objective optimization based FRNN and its application to pH control process

Author keywords

Fuzzy recurrent neural network; Generalized predictive control; Multi objective optimization; PH neutralization process

Indexed keywords

CENTER POINTS; CONTROL PERIODS; FITTING ACCURACY; GAUSSIAN MEMBERSHIP FUNCTION; GENERALIZED PREDICTIVE CONTROL; GENERALIZED PREDICTIVE CONTROLLERS; LINEAR PROGRAMMING PROBLEM; LOCAL LINEAR MODELS; MODELING METHOD; NETWORK STRUCTURES; NON-LINEAR OPTIMIZATION PROBLEMS; PH CONTROL; PH NEUTRALIZATION PROCESS; SIMULATION RESULT;

EID: 70749122155     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (15)
  • 1
    • 0023310961 scopus 로고
    • Generalized predictive control(I): The basic algorithm
    • Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control(I): The basic algorithm. Automatica, 1987, 23(2):137-148
    • (1987) Automatica , vol.23 , Issue.2 , pp. 137-148
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3
  • 2
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • Qin S Z, Su H T, McAvoy T J. Comparison of four neural net learning methods for dynamic system identification. IEEE Trans. Neural Networks, 1992, 3(1):122-130
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 122-130
    • Qin, S.Z.1    Su, H.T.2    McAvoy, T.J.3
  • 3
    • 48949116212 scopus 로고    scopus 로고
    • Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process
    • Yuzgec U, Becerikli Y, Turker M. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process. IEEE Trans. Neural Networks, 2008, 19(7):1231-1242
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.7 , pp. 1231-1242
    • Yuzgec, U.1    Becerikli, Y.2    Turker, M.3
  • 4
    • 10444232686 scopus 로고    scopus 로고
    • Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process
    • Akesson B M, Toivonen H T, Waller J B, Nystrom R H. Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process. Comput. Chem. Eng., 2005, 29(2):323-335
    • (2005) Comput. Chem. Eng. , vol.29 , Issue.2 , pp. 323-335
    • Akesson, B.M.1    Toivonen, H.T.2    Waller, J.B.3    Nystrom, R.H.4
  • 5
    • 40049085383 scopus 로고    scopus 로고
    • A self-organizing recurrent fuzzy CMAC model for dynamic system identification
    • Lin C J, Lee C Y. A self-organizing recurrent fuzzy CMAC model for dynamic system identification. Int. J. Intell. Syst., 2008, 23(3):384-396
    • (2008) Int. J. Intell. Syst. , vol.23 , Issue.3 , pp. 384-396
    • Lin, C.J.1    Lee, C.Y.2
  • 6
    • 21444456845 scopus 로고    scopus 로고
    • Fuzzy predictive control based on T-S model
    • Xing Zongyi, Hu Weili, Jia Limin. Fuzzy predictive control based on T-S model. Control and Decision, 2005, 20(5):495-504
    • (2005) Control and Decision , vol.20 , Issue.5 , pp. 495-504
    • Xing, Z.1    Hu, W.2    Jia, L.3
  • 7
    • 48049123261 scopus 로고    scopus 로고
    • Fuzzy predictive control of burning through point for lead-zinc sintering process
    • Wu Min, Zhuang Kun, Ding Lei, Wang Chunsheng. Fuzzy predictive control of burning through point for lead-zinc sintering process. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1698-1702
    • (2008) Journal of Chemical Industry and Engineering(China) , vol.59 , Issue.7 , pp. 1698-1702
    • Wu, M.1    Zhuang, K.2    Ding, L.3    Wang, C.4
  • 8
    • 33845216232 scopus 로고    scopus 로고
    • Generalized predictive control using recurrent fuzzy neural networks for industrial processes
    • Lu C H, Tsai C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J. Process Contr., 2007, 17(1):83-92
    • (2007) J. Process Contr. , vol.17 , Issue.1 , pp. 83-92
    • Lu, C.H.1    Tsai, C.C.2
  • 9
    • 33644694908 scopus 로고    scopus 로고
    • A compensation-based recurrent fuzzy neural network for dynamic system identification
    • Lin C J, Chen C H. A compensation-based recurrent fuzzy neural network for dynamic system identification. Eur. J. Oper. Res., 2006, 172(2):696-715
    • (2006) Eur. J. Oper. Res. , vol.172 , Issue.2 , pp. 696-715
    • Lin, C.J.1    Chen, C.H.2
  • 10
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multi-objective genetic algorithm: NSGA-II
    • Deb K. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002, 6(2):182-197
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1
  • 11
    • 17644396945 scopus 로고
    • Modified generalized predictive control algorithm
    • Jin Yuanyu, Gu Xingyuan. Modified generalized predictive control algorithm. Information and Control, 1990, 19(3):8-14
    • (1990) Information and Control , vol.19 , Issue.3 , pp. 8-14
    • Jin, Y.1    Gu, X.2
  • 13
    • 5144222836 scopus 로고    scopus 로고
    • Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study
    • Li N, Li S Y, Xi Y G. Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Inform. Sciences, 2004, 165(3):247-263
    • (2004) Inform. Sciences , vol.165 , Issue.3 , pp. 247-263
    • Li, N.1    Li, S.Y.2    Xi, Y.G.3
  • 14
    • 58349083459 scopus 로고    scopus 로고
    • Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model
    • Mahmoodi S, Poshtan J, Jahed-Motlagh M R, Montazeria A. Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model. Che. Eng. J., 2009, 146(3):328-337
    • (2009) Che. Eng. J. , vol.146 , Issue.3 , pp. 328-337
    • Mahmoodi, S.1    Poshtan, J.2    Jahed-Motlagh, M.R.3    Montazeria, A.4
  • 15
    • 35748933565 scopus 로고    scopus 로고
    • DNA-NSGA-II nonlinear dynamic system modeling approach using RBF neural networks
    • Tao Jili, Wang Ning. DNA-NSGA-II nonlinear dynamic system modeling approach using RBF neural networks. Journal of Chemical Industry and Engineering(China), 2007, 58(10):2530-2538
    • (2007) Journal of Chemical Industry and Engineering(China) , vol.58 , Issue.10 , pp. 2530-2538
    • Tao, J.1    Wang, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.