메뉴 건너뛰기




Volumn 33, Issue 5, 2009, Pages 159-163

Support vector regression hybrid algorithm based on rough set

Author keywords

Algorithm of SMO regression; Boundary set; Rough set; Support vector regression

Indexed keywords

BOUNDARY SAMPLES; BOUNDARY SET; HIGH EFFICIENCY; HIGH QUALITY; HYBRID ALGORITHMS; IMPRECISE DATA; LEARNING MACHINES; MACHINE-LEARNING; ROUGH SET; SEQUENTIAL MINIMAL OPTIMIZATION ALGORITHMS; SMO ALGORITHMS; SUPPORT VECTOR; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; TRAINING SETS; TRAINING SUBSETS;

EID: 70749090812     PISSN: 16735005     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (11)
  • 2
    • 70749104545 scopus 로고    scopus 로고
    • Chinese source
    • VAPNIK Vladimir N. 2004: 6.
    • (2004) , pp. 6
    • Vapnik, V.N.1
  • 3
    • 52349113077 scopus 로고    scopus 로고
    • Structural reliability analysis method based on support vector machines and Monte Carlo and its application
    • XU Chang-hang, CHEN Guo-ming, XIE Jing. Structural reliability analysis method based on support vector machines and Monte Carlo and its application[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(4): 103-108.
    • (2008) Journal of China University of Petroleum(Edition of Natural Science) , vol.32 , Issue.4 , pp. 103-108
    • Xu, C.-H.1    Chen, G.-M.2    Xie, J.3
  • 4
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Tech Rep MSR-TR 98-14, Microsoft Res., Redmond, WA, Apr. [2007-09-30]
    • PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines[R/OL]. Tech Rep MSR-TR 98-14, Microsoft Res., Redmond, WA, Apr. 1998[2007-09-30]. http://research.microsoft.com/en-us/um/people/jplatt/smotr.pdf.
    • (1998)
    • Platt, J.1
  • 5
    • 0036160859 scopus 로고    scopus 로고
    • Steve Lawrence efficient SVM regression training with SMO
    • FLAKE Gary William. Steve Lawrence efficient SVM regression training with SMO[J]. Machine Learning, 2002, 46: 271-290.
    • (2002) Machine Learning , vol.46 , pp. 271-290
    • Flake, G.W.1
  • 6
    • 15844367263 scopus 로고    scopus 로고
    • Simplified SMO algorithm for support vector regression
    • YANG Jie, YE Chen-zhou, QUAN Yong, et al. Simplified SMO algorithm for support vector regression[J]. Infrared and Laser Engineering, 2004, 10(33): 371-375.
    • (2004) Infrared and Laser Engineering , vol.10 , Issue.33 , pp. 371-375
    • Yang, J.1    Ye, C.-Z.2    Quan, Y.3
  • 8
    • 0033308966 scopus 로고    scopus 로고
    • An explicit algorithm for training support vector machines
    • MATTERA D, PALMIERI F, HAYKIN S. An explicit algorithm for training support vector machines[J]. Signal Processing Letters, IEEE, 1999, 9(6): 243-245.
    • (1999) Signal Processing Letters, IEEE , vol.9 , Issue.6 , pp. 243-245
    • Mattera, D.1    Palmieri, F.2    Haykin, S.3
  • 9
    • 57649163524 scopus 로고    scopus 로고
    • Research on algorithm of support vector stepwise regression
    • ZENG Shao-hua, WEI Yan, DUAN Ting-cai, et al. Research on algorithm of support vector stepwise regression[J]. Computer Engineering and Applications, 2007, 43(8): 78-81.
    • (2007) Computer Engineering and Applications , vol.43 , Issue.8 , pp. 78-81
    • Zeng, S.-H.1    Wei, Y.2    Duan, T.-C.3
  • 10
    • 70749101697 scopus 로고    scopus 로고
    • Chinese source
    • 2006: 77-95.
    • (2006) , pp. 77-95
  • 11
    • 70749136356 scopus 로고    scopus 로고
    • Chinese source
    • 2001: 24-34.
    • (2001) , pp. 24-34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.