-
1
-
-
34548801789
-
The molecular basis of eukaryotic transcription
-
Kornberg R.D. The molecular basis of eukaryotic transcription. Proc Natl Acad Sci U S A 104 (2007) 12955-12961
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12955-12961
-
-
Kornberg, R.D.1
-
2
-
-
58849109017
-
Structure-function studies of the RNA polymerase II elongation complex
-
Brueckner F., Armache K.J., Cheung A., Damsma G.E., Kettenberger H., Lehmann E., Sydow J., and Cramer P. Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr D Biol Crystallogr 65 (2009) 112-120
-
(2009)
Acta Crystallogr D Biol Crystallogr
, vol.65
, pp. 112-120
-
-
Brueckner, F.1
Armache, K.J.2
Cheung, A.3
Damsma, G.E.4
Kettenberger, H.5
Lehmann, E.6
Sydow, J.7
Cramer, P.8
-
3
-
-
67650938441
-
RNA polymerase active center: the molecular engine of transcription
-
Nudler E. RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78 (2009) 335-361
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 335-361
-
-
Nudler, E.1
-
4
-
-
39849097831
-
RNA polymerase: the vehicle of transcription
-
Borukhov S., and Nudler E. RNA polymerase: the vehicle of transcription. Trends Microbiol 16 (2008) 126-134
-
(2008)
Trends Microbiol
, vol.16
, pp. 126-134
-
-
Borukhov, S.1
Nudler, E.2
-
5
-
-
33846914726
-
The regulatory roles and mechanism of transcriptional pausing
-
Landick R. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 34 (2006) 1062-1066
-
(2006)
Biochem Soc Trans
, vol.34
, pp. 1062-1066
-
-
Landick, R.1
-
7
-
-
44649086378
-
Structural evolution of multisubunit RNA polymerases
-
Werner F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 16 (2008) 247-250
-
(2008)
Trends Microbiol
, vol.16
, pp. 247-250
-
-
Werner, F.1
-
8
-
-
66549126163
-
A movie of the RNA polymerase nucleotide addition cycle
-
Most comprehensive structure-based model of nucleotide addition cycle to date.
-
Brueckner F., Ortiz J., and Cramer P. A movie of the RNA polymerase nucleotide addition cycle. Curr Opin Struct Biol 19 (2009) 294-299. Most comprehensive structure-based model of nucleotide addition cycle to date.
-
(2009)
Curr Opin Struct Biol
, vol.19
, pp. 294-299
-
-
Brueckner, F.1
Ortiz, J.2
Cramer, P.3
-
9
-
-
0031552174
-
The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase
-
Nudler E., Mustaev A., Lukhtanov E., and Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89 (1997) 33-41
-
(1997)
Cell
, vol.89
, pp. 33-41
-
-
Nudler, E.1
Mustaev, A.2
Lukhtanov, E.3
Goldfarb, A.4
-
10
-
-
0031059249
-
Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′-end of the RNA intact and extruded
-
Komissarova N., and Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′-end of the RNA intact and extruded. Proc Natl Acad Sci U S A 94 (1997) 1755-1760
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 1755-1760
-
-
Komissarova, N.1
Kashlev, M.2
-
11
-
-
0037077154
-
E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
-
Park J., Marr M.T., and Roberts J.W. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109 (2002) 757-767
-
(2002)
Cell
, vol.109
, pp. 757-767
-
-
Park, J.1
Marr, M.T.2
Roberts, J.W.3
-
12
-
-
0038756088
-
Cooperation between RNA polymerase molecules in transcription elongation
-
Epshtein V., and Nudler E. Cooperation between RNA polymerase molecules in transcription elongation. Science 300 (2003) 801-805
-
(2003)
Science
, vol.300
, pp. 801-805
-
-
Epshtein, V.1
Nudler, E.2
-
13
-
-
67049154068
-
Transcriptional pausing without backtracking
-
Landick R. Transcriptional pausing without backtracking. Proc Natl Acad Sci U S A 106 (2009) 8797-8798
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 8797-8798
-
-
Landick, R.1
-
14
-
-
66149143165
-
The origin of short transcriptional pauses
-
Depken M., Galburt E.A., and Grill S.W. The origin of short transcriptional pauses. Biophys J 96 (2009) 2189-2193
-
(2009)
Biophys J
, vol.96
, pp. 2189-2193
-
-
Depken, M.1
Galburt, E.A.2
Grill, S.W.3
-
15
-
-
34547204502
-
A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
-
Toulokhonov I., Zhang J., Palangat M., and Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27 (2007) 406-419
-
(2007)
Mol Cell
, vol.27
, pp. 406-419
-
-
Toulokhonov, I.1
Zhang, J.2
Palangat, M.3
Landick, R.4
-
16
-
-
67049100283
-
Mechanism of sequence-specific pausing of bacterial RNA polymerase
-
Kireeva M.L., and Kashlev M. Mechanism of sequence-specific pausing of bacterial RNA polymerase. Proc Natl Acad Sci U S A 106 (2009) 8900-8905
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 8900-8905
-
-
Kireeva, M.L.1
Kashlev, M.2
-
17
-
-
0033578701
-
Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution
-
Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K., and Darst S.A. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98 (1999) 811-824
-
(1999)
Cell
, vol.98
, pp. 811-824
-
-
Zhang, G.1
Campbell, E.A.2
Minakhin, L.3
Richter, C.4
Severinov, K.5
Darst, S.A.6
-
18
-
-
0035827346
-
Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution
-
Cramer P., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution. Science 292 (2001) 1863-1876
-
(2001)
Science
, vol.292
, pp. 1863-1876
-
-
Cramer, P.1
Bushnell, D.A.2
Kornberg, R.D.3
-
19
-
-
39149142997
-
The X-ray crystal structure of RNA polymerase from Archaea
-
Hirata A., Klein B.J., and Murakami K.S. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451 (2008) 851-854
-
(2008)
Nature
, vol.451
, pp. 851-854
-
-
Hirata, A.1
Klein, B.J.2
Murakami, K.S.3
-
20
-
-
0037071844
-
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution
-
Vassylyev D.G., Sekine S., Laptenko O., Lee J., Vassylyeva M.N., Borukhov S., and Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417 (2002) 712-719
-
(2002)
Nature
, vol.417
, pp. 712-719
-
-
Vassylyev, D.G.1
Sekine, S.2
Laptenko, O.3
Lee, J.4
Vassylyeva, M.N.5
Borukhov, S.6
Yokoyama, S.7
-
21
-
-
0035827332
-
Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
-
Gnatt A.L., Cramer P., Fu J., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292 (2001) 1876-1882
-
(2001)
Science
, vol.292
, pp. 1876-1882
-
-
Gnatt, A.L.1
Cramer, P.2
Fu, J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
22
-
-
10944232674
-
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
-
Kettenberger H., Armache K., and Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16 (2004) 955-965
-
(2004)
Mol Cell
, vol.16
, pp. 955-965
-
-
Kettenberger, H.1
Armache, K.2
Cramer, P.3
-
23
-
-
34447513771
-
Structural basis for substrate loading in bacterial RNA polymerase
-
The first crystallographic observation of trigger loop refolding into a helical hairpin in NTP-dependent fashion. Conformational dynamics of RNA polymerase and its role in catalysis transcends the speculative stage.
-
Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I., and Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448 (2007) 163-168. The first crystallographic observation of trigger loop refolding into a helical hairpin in NTP-dependent fashion. Conformational dynamics of RNA polymerase and its role in catalysis transcends the speculative stage.
-
(2007)
Nature
, vol.448
, pp. 163-168
-
-
Vassylyev, D.G.1
Vassylyeva, M.N.2
Zhang, J.3
Palangat, M.4
Artsimovitch, I.5
Landick, R.6
-
24
-
-
63449096360
-
Bacterial RNA polymerase inhibitors: an organized overview of their structure, derivatives, biological activity and current clinical development status
-
Mariani R., and Maffioli S.I. Bacterial RNA polymerase inhibitors: an organized overview of their structure, derivatives, biological activity and current clinical development status. Curr Med Chem 16 (2009) 430-454
-
(2009)
Curr Med Chem
, vol.16
, pp. 430-454
-
-
Mariani, R.1
Maffioli, S.I.2
-
25
-
-
28544453415
-
Structural basis for transcription inhibition by tagetitoxin
-
Vassylyev D.G., Svetlov V., Vassylyeva M.N., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., and Artsimovitch I. Structural basis for transcription inhibition by tagetitoxin. Nat Struct Mol Biol 12 (2005) 1086-1093
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 1086-1093
-
-
Vassylyev, D.G.1
Svetlov, V.2
Vassylyeva, M.N.3
Perederina, A.4
Igarashi, N.5
Matsugaki, N.6
Wakatsuki, S.7
Artsimovitch, I.8
-
26
-
-
23944521364
-
Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation
-
Tuske S., Sarafianos S.G., Wang X., Hudson B., Sineva E., Mukhopadhyay J., Birktoft J.J., Leroy O., Ismail S., Clark A.D.J., et al. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 122 (2005) 541-552
-
(2005)
Cell
, vol.122
, pp. 541-552
-
-
Tuske, S.1
Sarafianos, S.G.2
Wang, X.3
Hudson, B.4
Sineva, E.5
Mukhopadhyay, J.6
Birktoft, J.J.7
Leroy, O.8
Ismail, S.9
Clark, A.D.J.10
-
27
-
-
24044497229
-
Structural basis of transcription inhibition by antibiotic streptolydigin
-
Temiakov D., Zenkin N., Vassylyeva M.N., Perederina A., Tahirov T.H., Kashkina E., Savkina M., Zorov S., Nikiforov V., Igarashi N., et al. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 19 (2005) 655-666
-
(2005)
Mol Cell
, vol.19
, pp. 655-666
-
-
Temiakov, D.1
Zenkin, N.2
Vassylyeva, M.N.3
Perederina, A.4
Tahirov, T.H.5
Kashkina, E.6
Savkina, M.7
Zorov, S.8
Nikiforov, V.9
Igarashi, N.10
-
28
-
-
23744489566
-
Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins
-
Artsimovitch I., Vassylyeva M.N., Svetlov D., Svetlov V., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., Tahirov T.H., and Vassylyev D.G. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122 (2005) 351-363
-
(2005)
Cell
, vol.122
, pp. 351-363
-
-
Artsimovitch, I.1
Vassylyeva, M.N.2
Svetlov, D.3
Svetlov, V.4
Perederina, A.5
Igarashi, N.6
Matsugaki, N.7
Wakatsuki, S.8
Tahirov, T.H.9
Vassylyev, D.G.10
-
29
-
-
47649125643
-
Allosteric regulation and catalysis emerge via a common route
-
Excellent review of current and emerging concepts of allosteric regulation, catalysis, and protein motions.
-
Goodey N.M., and Benkovic S.J. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4 (2008) 474-482. Excellent review of current and emerging concepts of allosteric regulation, catalysis, and protein motions.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 474-482
-
-
Goodey, N.M.1
Benkovic, S.J.2
-
30
-
-
0031863612
-
Reversible stalling of transcription elongation complexes by high pressure
-
Erijman L., and Clegg R.M. Reversible stalling of transcription elongation complexes by high pressure. Biophys J 75 (1998) 453-462
-
(1998)
Biophys J
, vol.75
, pp. 453-462
-
-
Erijman, L.1
Clegg, R.M.2
-
31
-
-
0037073062
-
The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription
-
Erie D.A. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. Biochim Biophys Acta 1577 (2002) 224-239
-
(2002)
Biochim Biophys Acta
, vol.1577
, pp. 224-239
-
-
Erie, D.A.1
-
32
-
-
0036753435
-
Swing-gate model of nucleotide entry into the RNA polymerase active center
-
Epshtein V., Mustaev A., Markovtsov V., Bereshchenko O., Nikiforov V., and Goldfarb A. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol Cell 10 (2002) 623-634
-
(2002)
Mol Cell
, vol.10
, pp. 623-634
-
-
Epshtein, V.1
Mustaev, A.2
Markovtsov, V.3
Bereshchenko, O.4
Nikiforov, V.5
Goldfarb, A.6
-
33
-
-
12944324227
-
A ratchet mechanism of transcription elongation and its control
-
The first comprehensive model of transcription integrating the conformational dynamics and the Brownian ratchet concepts.
-
Bar-Nahum G., Epshtein V., Ruckenstein A.E., Rafikov R., Mustaev A., and Nudler E. A ratchet mechanism of transcription elongation and its control. Cell 120 (2005) 183-193. The first comprehensive model of transcription integrating the conformational dynamics and the Brownian ratchet concepts.
-
(2005)
Cell
, vol.120
, pp. 183-193
-
-
Bar-Nahum, G.1
Epshtein, V.2
Ruckenstein, A.E.3
Rafikov, R.4
Mustaev, A.5
Nudler, E.6
-
34
-
-
28544432440
-
Direct observation of base-pair stepping by RNA polymerase
-
Abbondanzieri E.A., Greenleaf W.J., Shaevitz J.W., Landick R., and Block S.M. Direct observation of base-pair stepping by RNA polymerase. Nature 438 (2005) 460-465
-
(2005)
Nature
, vol.438
, pp. 460-465
-
-
Abbondanzieri, E.A.1
Greenleaf, W.J.2
Shaevitz, J.W.3
Landick, R.4
Block, S.M.5
-
35
-
-
66349138227
-
Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution
-
A large set of high resolution structures of backtracked complexes of yeast RNA polymerase reveals previously unobserved conformations of and interactions between mobile/flexible elements of the elongation complex.
-
Wang D., Bushnell D.A., Huang X., Westover K.D., Levitt M., and Kornberg R.D. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324 (2009) 1203-1206. A large set of high resolution structures of backtracked complexes of yeast RNA polymerase reveals previously unobserved conformations of and interactions between mobile/flexible elements of the elongation complex.
-
(2009)
Science
, vol.324
, pp. 1203-1206
-
-
Wang, D.1
Bushnell, D.A.2
Huang, X.3
Westover, K.D.4
Levitt, M.5
Kornberg, R.D.6
-
36
-
-
49449102926
-
Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation
-
Brownian ratchet-like interconversion of pre- and post-translocated states of elongation complex observed crystallographically. A comprehensive model of translocation dominated by the movement of mobile elements of RNA polymerase.
-
Brueckner F., and Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15 (2008) 811-818. Brownian ratchet-like interconversion of pre- and post-translocated states of elongation complex observed crystallographically. A comprehensive model of translocation dominated by the movement of mobile elements of RNA polymerase.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 811-818
-
-
Brueckner, F.1
Cramer, P.2
-
37
-
-
33751235874
-
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis
-
Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., and Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127 (2006) 941-954
-
(2006)
Cell
, vol.127
, pp. 941-954
-
-
Wang, D.1
Bushnell, D.A.2
Westover, K.D.3
Kaplan, C.D.4
Kornberg, R.D.5
-
38
-
-
67449116330
-
Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA
-
Novel conformations and contacts observed in mismatch-induced paused RNA pol II elongation complex.
-
Sydow J.F., Brueckner F., Cheung A.C.M., Damsma G.E., Dengl S., Lehmann E., Vassylyev D., and Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 34 (2009) 710-721. Novel conformations and contacts observed in mismatch-induced paused RNA pol II elongation complex.
-
(2009)
Mol Cell
, vol.34
, pp. 710-721
-
-
Sydow, J.F.1
Brueckner, F.2
Cheung, A.C.M.3
Damsma, G.E.4
Dengl, S.5
Lehmann, E.6
Vassylyev, D.7
Cramer, P.8
-
39
-
-
50149109300
-
Single-molecule studies of RNA polymerase: motoring along
-
Herbert K.M., Greenleaf W.J., and Block S.M. Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77 (2008) 149-176
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 149-176
-
-
Herbert, K.M.1
Greenleaf, W.J.2
Block, S.M.3
-
40
-
-
67849124180
-
Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase
-
Kireeva M., Nedialkov Y.A., Gong X.Q., Zhang C., Xiong Y., Moon W., Burton Z.F., and Kashlev M. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods 48 (2009) 333-345
-
(2009)
Methods
, vol.48
, pp. 333-345
-
-
Kireeva, M.1
Nedialkov, Y.A.2
Gong, X.Q.3
Zhang, C.4
Xiong, Y.5
Moon, W.6
Burton, Z.F.7
Kashlev, M.8
-
41
-
-
42149126654
-
Monitoring RNA transcription in real time by using surface plasmon resonance
-
Greive S.J., Weitzel S.E., Goodarzi J.P., Main L.J., Pasman Z., and von Hippel P.H. Monitoring RNA transcription in real time by using surface plasmon resonance. Proc Natl Acad Sci U S A 105 (2008) 3315-3320
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 3315-3320
-
-
Greive, S.J.1
Weitzel, S.E.2
Goodarzi, J.P.3
Main, L.J.4
Pasman, Z.5
von Hippel, P.H.6
-
42
-
-
64049102289
-
Binding of small-molecule ligands to proteins: 'what you see' is not always 'what you get'
-
Mobley D.L., and Dill K.A. Binding of small-molecule ligands to proteins: 'what you see' is not always 'what you get'. Structure 17 (2009) 489-498
-
(2009)
Structure
, vol.17
, pp. 489-498
-
-
Mobley, D.L.1
Dill, K.A.2
-
43
-
-
58149247893
-
Predicting free energy changes using structural ensembles
-
Benedix A., Becker C.M., de Groot B.L., Caflisch A., and Böckmann R.A. Predicting free energy changes using structural ensembles. Nat Methods 6 (2009) 3-4
-
(2009)
Nat Methods
, vol.6
, pp. 3-4
-
-
Benedix, A.1
Becker, C.M.2
de Groot, B.L.3
Caflisch, A.4
Böckmann, R.A.5
-
44
-
-
59649110607
-
Nucleic acid polymerases use a general acid for nucleotidyl transfer
-
An important update on the classic two-metal-ion catalysis for DNA and RNA polymerases.
-
Castro C., Smidansky E.D., Arnold J.J., Maksimchuk K.R., Moustafa I., Uchida A., Götte M., Konigsberg W., and Cameron C.E. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16 (2009) 212-218. An important update on the classic two-metal-ion catalysis for DNA and RNA polymerases.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 212-218
-
-
Castro, C.1
Smidansky, E.D.2
Arnold, J.J.3
Maksimchuk, K.R.4
Moustafa, I.5
Uchida, A.6
Götte, M.7
Konigsberg, W.8
Cameron, C.E.9
-
45
-
-
33645109502
-
Structure and dynamics of RNA polymerase II elongation complex
-
Suenaga A., Okimoto N., Futatsugi N., Hirano Y., Narumi T., Ohno Y., Yanai R., Hirokawa T., Ebisuzaki T., Konagaya A., et al. Structure and dynamics of RNA polymerase II elongation complex. Biochem Biophys Res Commun 343 (2006) 90-98
-
(2006)
Biochem Biophys Res Commun
, vol.343
, pp. 90-98
-
-
Suenaga, A.1
Okimoto, N.2
Futatsugi, N.3
Hirano, Y.4
Narumi, T.5
Ohno, Y.6
Yanai, R.7
Hirokawa, T.8
Ebisuzaki, T.9
Konagaya, A.10
-
46
-
-
8444243746
-
Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme
-
Anisotropic network mode analysis provides insights into collective motions of multi-subunit RNA polymerases, such as the effects of sigma binding on core mobility, and differential deformability of the bridge helix.
-
Yildirim Y., and Doruker P. Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme. J Biomol Struct Dyn 22 (2004) 267-280. Anisotropic network mode analysis provides insights into collective motions of multi-subunit RNA polymerases, such as the effects of sigma binding on core mobility, and differential deformability of the bridge helix.
-
(2004)
J Biomol Struct Dyn
, vol.22
, pp. 267-280
-
-
Yildirim, Y.1
Doruker, P.2
-
47
-
-
34848915239
-
Allosteric control of the RNA polymerase by the elongation factor RfaH
-
Svetlov V., Belogurov G.A., Shabrova E., Vassylyev D.G., and Artsimovitch I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res 35 (2007) 5694-5705
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 5694-5705
-
-
Svetlov, V.1
Belogurov, G.A.2
Shabrova, E.3
Vassylyev, D.G.4
Artsimovitch, I.5
-
48
-
-
38949110771
-
The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex
-
Sevostyanova A., Svetlov V., Vassylyev D.G., and Artsimovitch I. The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc Natl Acad Sci U S A 105 (2008) 865-870
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 865-870
-
-
Sevostyanova, A.1
Svetlov, V.2
Vassylyev, D.G.3
Artsimovitch, I.4
-
49
-
-
37349115934
-
An allosteric path to transcription termination
-
Epshtein V., Cardinale C.J., Ruckenstein A.E., Borukhov S., and Nudler E. An allosteric path to transcription termination. Mol Cell 28 (2007) 991-1001
-
(2007)
Mol Cell
, vol.28
, pp. 991-1001
-
-
Epshtein, V.1
Cardinale, C.J.2
Ruckenstein, A.E.3
Borukhov, S.4
Nudler, E.5
-
50
-
-
44449103640
-
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin
-
Kaplan C.D., Larsson K., and Kornberg R.D. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30 (2008) 547-556
-
(2008)
Mol Cell
, vol.30
, pp. 547-556
-
-
Kaplan, C.D.1
Larsson, K.2
Kornberg, R.D.3
-
51
-
-
58249100113
-
Transcription inactivation through local refolding of the RNA polymerase structure
-
Antibiotic uses intrinsically high deformability of RNA polymerase mobile elements to inhibit transcription through induced mis-folding of the enzyme.
-
Belogurov G.A., Vassylyeva M.N., Sevostyanova A., Appleman J.R., Xiang A.X., Lira R., Webber S.E., Klyuyev S., Nudler E., Artsimovitch I., et al. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457 (2009) 332-335. Antibiotic uses intrinsically high deformability of RNA polymerase mobile elements to inhibit transcription through induced mis-folding of the enzyme.
-
(2009)
Nature
, vol.457
, pp. 332-335
-
-
Belogurov, G.A.1
Vassylyeva, M.N.2
Sevostyanova, A.3
Appleman, J.R.4
Xiang, A.X.5
Lira, R.6
Webber, S.E.7
Klyuyev, S.8
Nudler, E.9
Artsimovitch, I.10
-
52
-
-
0027184481
-
A general two-metal-ion mechanism for catalytic RNA
-
Steitz T.A., and Steitz J.A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90 (1993) 6498-6502
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 6498-6502
-
-
Steitz, T.A.1
Steitz, J.A.2
|