-
1
-
-
0031232208
-
Bifractality of the devil's staircase appearing in the Burgers equation with Brownian initial velocity
-
Aurell, E., Frisch, U., Noullez, A., Blank, M.: Bifractality of the devil's staircase appearing in the Burgers equation with Brownian initial velocity. J. Stat. Phys. 88, 1151-1164 (1997).
-
(1997)
J. Stat. Phys.
, vol.88
, pp. 1151-1164
-
-
Aurell, E.1
Frisch, U.2
Noullez, A.3
Blank, M.4
-
2
-
-
21844507039
-
Statistical properties of shocks in Burgers turbulence II: Tail probabilities for velocities, shock-strengths and rarefaction intervals
-
Avellaneda, M.: Statistical properties of shocks in Burgers turbulence II: tail probabilities for velocities, shock-strengths and rarefaction intervals. Commun. Math. Phys. 169, 45-59 (1995).
-
(1995)
Commun. Math. Phys.
, vol.169
, pp. 45-59
-
-
Avellaneda, M.1
-
3
-
-
0003028082
-
Statistical properties of shocks in Burgers turbulence
-
Avellaneda, M., Weinan, E.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13-38 (1995).
-
(1995)
Commun. Math. Phys.
, vol.172
, pp. 13-38
-
-
Avellaneda, M.1
Weinan, E.2
-
4
-
-
0009763937
-
Scale-invariant matter distribution in the universe. II-Bifractal behaviour
-
Balian, R., Schaeffer, R.: Scale-invariant matter distribution in the universe. II-Bifractal behaviour. Astron. Astrophys. 226, 373-414 (1989).
-
(1989)
Astron. Astrophys.
, vol.226
, pp. 373-414
-
-
Balian, R.1
Schaeffer, R.2
-
5
-
-
34250782224
-
Burgers turbulence
-
Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1-66 (2007).
-
(2007)
Phys. Rep.
, vol.447
, pp. 1-66
-
-
Bec, J.1
Khanin, K.2
-
6
-
-
0032478424
-
The inviscid Burgers equation with Brownian initial velocity
-
Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397-406 (1998).
-
(1998)
Commun. Math. Phys.
, vol.193
, pp. 397-406
-
-
Bertoin, J.1
-
8
-
-
0000332692
-
On a quasi-linear parabolic equation occurring in aerodynamics
-
Cole, J. D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225-236 (1951).
-
(1951)
Quart. Appl. Math.
, vol.9
, pp. 225-236
-
-
Cole, J.D.1
-
9
-
-
21344459505
-
Self-similarity and scaling behavior of scale-free gravitational clustering
-
Colombi, S., Bouchet, F. R., Hernquist, L.: Self-similarity and scaling behavior of scale-free gravitational clustering. Astrophys. J. 465, 14 (1996).
-
(1996)
Astrophys. J.
, vol.465
, pp. 14
-
-
Colombi, S.1
Bouchet, F.R.2
Hernquist, L.3
-
10
-
-
0001732798
-
On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe
-
Davis, M., Peebles, P. J. E.: On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe. Astrophys. J. Suppl. Ser. 34, 425-450 (1977).
-
(1977)
Astrophys. J. Suppl. Ser.
, vol.34
, pp. 425-450
-
-
Davis, M.1
Peebles, P.J.E.2
-
11
-
-
0020891622
-
L'equation de Burgers deterministe et statistique
-
Fournier, J.-D., Frisch, U.: L'equation de Burgers deterministe et statistique. J. Mech. Theor. Appl. 2, 699-750 (1983).
-
(1983)
J. Mech. Theor. Appl.
, vol.2
, pp. 699-750
-
-
Fournier, J.-D.1
Frisch, U.2
-
12
-
-
0033843073
-
Exact statistical properties of the Burgers equation
-
Frachebourg, L., Martin, Ph. A.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323-349 (2000).
-
(2000)
J. Fluid Mech.
, vol.417
, pp. 323-349
-
-
Frachebourg, L.1
Martin, P.A.2
-
13
-
-
0004185784
-
-
Cambridge: Cambridge University Press
-
Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995).
-
(1995)
Turbulence
-
-
Frisch, U.1
-
14
-
-
0002447660
-
Burgulence
-
M. Lesieur, A. Yaglom, and F. David (Eds.), Berlin: Springer
-
Frisch, U., Bec, J.: Burgulence. In: Lesieur, M., Yaglom, A., David, F. (eds.) Les Houches 2000: New Trends in Turbulence. Springer, Berlin (2001).
-
(2001)
Les Houches 2000: New Trends in Turbulence
-
-
Frisch, U.1
Bec, J.2
-
15
-
-
0002641355
-
Brownian motion with a parabolic drift and airy functions
-
Groeneboom, P.: Brownian motion with a parabolic drift and airy functions. Probab. Theory Related Fields 81, 79-109 (1989).
-
(1989)
Probab. Theory Related Fields
, vol.81
, pp. 79-109
-
-
Groeneboom, P.1
-
16
-
-
0003783423
-
-
Manchester: Manchester University Press
-
Gurbatov, S. N., Malakhov, A., Saichev, A.: Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester (1991).
-
(1991)
Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles
-
-
Gurbatov, S.N.1
Malakhov, A.2
Saichev, A.3
-
17
-
-
0001411157
-
The large-scale structure of the universe in the frame of the model equation of non-linear diffusion
-
Gurbatov, S. N., Saichev, A. I., Shandarin, S. F.: The large-scale structure of the universe in the frame of the model equation of non-linear diffusion. Mont. Not. R. Astron. Soc. 236, 385-402 (1989).
-
(1989)
Mont. Not. R. Astron. Soc.
, vol.236
, pp. 385-402
-
-
Gurbatov, S.N.1
Saichev, A.I.2
Shandarin, S.F.3
-
18
-
-
0031205673
-
On the decay of Burgers turbulence
-
Gurbatov, S. N., Simdyankin, S. I., Aurell, E., Frisch, U., Toth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339-374 (1997).
-
(1997)
J. Fluid Mech.
, vol.344
, pp. 339-374
-
-
Gurbatov, S.N.1
Simdyankin, S.I.2
Aurell, E.3
Frisch, U.4
Toth, G.5
-
19
-
-
84980078224
-
The partial differential equation ut+uux=uxx
-
Hopf, E.: The partial differential equation ut+uux=uxx. Commun. Pure Appl. Math. 3, 201-230 (1950).
-
(1950)
Commun. Pure Appl. Math.
, vol.3
, pp. 201-230
-
-
Hopf, E.1
-
20
-
-
0018491353
-
Asymptotic properties of Burgers turbulence
-
Kida, S.: Asymptotic properties of Burgers turbulence. J. Fluid Mech. 93, 337-377 (1979).
-
(1979)
J. Fluid Mech.
, vol.93
, pp. 337-377
-
-
Kida, S.1
-
21
-
-
5244302926
-
Lagrangian-history statistical theory for Burgers' equation
-
Kraichnan, R. H.: Lagrangian-history statistical theory for Burgers' equation. Phys. Fluids 11, 265-277 (1968).
-
(1968)
Phys. Fluids
, vol.11
, pp. 265-277
-
-
Kraichnan, R.H.1
-
23
-
-
12044258348
-
A test of the adhesion approximation for gravitational clustering
-
Melott, A. L., Shandarin, S. F., Weinberg, D. H.: A test of the adhesion approximation for gravitational clustering. Astrophys. J. 428, 28-34 (1994).
-
(1994)
Astrophys. J.
, vol.428
, pp. 28-34
-
-
Melott, A.L.1
Shandarin, S.F.2
Weinberg, D.H.3
-
24
-
-
0031231679
-
Burgers equation with self-similar Gaussian initial data: Tail probabilities
-
Molchan, G. M.: Burgers equation with self-similar Gaussian initial data: tail probabilities. J. Stat. Phys. 88, 1139-1150 (1997).
-
(1997)
J. Stat. Phys.
, vol.88
, pp. 1139-1150
-
-
Molchan, G.M.1
-
25
-
-
27144527957
-
Global picture of self-similar and non-self-similar decay in Burgers turbulence
-
Noullez, A., Gurbatov, S. N., Aurell, E., Simdyankin, S. I.: Global picture of self-similar and non-self-similar decay in Burgers turbulence. Phys. Rev. E 71, 056305 (2005).
-
(2005)
Phys. Rev. E
, vol.71
, pp. 056305
-
-
Noullez, A.1
Gurbatov, S.N.2
Aurell, E.3
Simdyankin, S.I.4
-
26
-
-
0001933907
-
Non-linear evolution of cosmological power spectra
-
Peacock, J. A., Dodds, S. J.: Non-linear evolution of cosmological power spectra. Mon. Not. R. Astron. Soc. 280, L19-L26 (1996).
-
(1996)
Mon. Not. R. Astron. Soc.
, vol.280
-
-
Peacock, J.A.1
Dodds, S.J.2
-
28
-
-
6644224525
-
The inviscid Burgers equation with initial data of Brownian type
-
She, Z.-S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623-641 (1992).
-
(1992)
Commun. Math. Phys.
, vol.148
, pp. 623-641
-
-
She, Z.-S.1
Aurell, E.2
Frisch, U.3
-
29
-
-
34249839748
-
Statistics of shocks in solutions of inviscid Burgers equation
-
Sinai, Ya. G.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601-621 (1992).
-
(1992)
Commun. Math. Phys.
, vol.148
, pp. 601-621
-
-
Sinai, Y.G.1
-
30
-
-
0034349029
-
On the large time asymptotics of decaying Burgers turbulence
-
Tribe, R., Zaboronski, O.: On the large time asymptotics of decaying Burgers turbulence. Commun. Math. Phys. 212, 415-436 (2000).
-
(2000)
Commun. Math. Phys.
, vol.212
, pp. 415-436
-
-
Tribe, R.1
Zaboronski, O.2
-
31
-
-
0005891125
-
Non-linear gravitational clustering: Smooth halos, substructures and scaling exponents
-
Valageas, P.: Non-linear gravitational clustering: smooth halos, substructures and scaling exponents. Astron. Astrophys. 347, 757-768 (1999).
-
(1999)
Astron. Astrophys.
, vol.347
, pp. 757-768
-
-
Valageas, P.1
-
32
-
-
38049186836
-
Using the Zeldovich dynamics to test expansion schemes
-
Valageas, P.: Using the Zeldovich dynamics to test expansion schemes. Astron. Astrophys. 476, 31-58 (2007).
-
(2007)
Astron. Astrophys.
, vol.476
, pp. 31-58
-
-
Valageas, P.1
-
33
-
-
68949184360
-
Quasi-linear regime and rare-event tails of decaying Burgers turbulence
-
Valageas, P.: Quasi-linear regime and rare-event tails of decaying Burgers turbulence. Phys. Rev. E 80, 016305 (2009).
-
(2009)
Phys. Rev. E
, vol.80
, pp. 016305
-
-
Valageas, P.1
-
34
-
-
61349193753
-
Statistical properties of the Burgers equation with Brownian initial velocity
-
Valageas, P.: Statistical properties of the Burgers equation with Brownian initial velocity. J. Stat. Phys. 134, 589 (2009).
-
(2009)
J. Stat. Phys.
, vol.134
, pp. 589
-
-
Valageas, P.1
-
35
-
-
0001672917
-
Burgers' equation, devil's staircases and the mass distribution for large-scale structures
-
Vergassola, M., Dubrulle, B., Frisch, U., Noullez, A.: Burgers' equation, devil's staircases and the mass distribution for large-scale structures. Astron. Astrophys. 289, 325-356 (1994).
-
(1994)
Astron. Astrophys.
, vol.289
, pp. 325-356
-
-
Vergassola, M.1
Dubrulle, B.2
Frisch, U.3
Noullez, A.4
-
36
-
-
41649099265
-
The fine-grained phase-space structure of cold dark matter haloes
-
Vogelsberger, M., White, S. D. M., Helmi, A., Springel, V.: The fine-grained phase-space structure of cold dark matter haloes. Mon. Not. R. Astron. Soc. 385, 236-254 (2008).
-
(2008)
Mon. Not. R. Astron. Soc.
, vol.385
, pp. 236-254
-
-
Vogelsberger, M.1
White, S.D.M.2
Helmi, A.3
Springel, V.4
-
37
-
-
0002320511
-
Gravitational instability: An approximate theory for large density perturbations
-
Zeldovich, Y. B.: Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84-89 (1970).
-
(1970)
Astron. Astrophys.
, vol.5
, pp. 84-89
-
-
Zeldovich, Y.B.1
|