메뉴 건너뛰기




Volumn , Issue , 2009, Pages 166-171

PGMCLU: A novel parallel grid-based clustering algorithm for multi-density datasets

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING METHODS; DATA MINING TASKS; DATA PARALLELISM; DATA PARTITION; DATA POINTS; DATA SETS; HIGH-DIMENSIONAL; LINEAR SPEED-UP; LOCAL CLUSTER; LOCAL CLUSTERING; MASSIVE DATA; PARALLEL GRIDS; SYNTHETIC DATASETS;

EID: 70450171974     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SWS.2009.5271791     Document Type: Conference Paper
Times cited : (13)

References (12)
  • 3
    • 26944461753 scopus 로고    scopus 로고
    • Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data
    • San Francisco, May
    • L. Ertöz, M. Steinbach, V. Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. In Proc. of the 2003 SIAM Intl.Conf. on Data Mining, San Francisco, May 2003.
    • (2003) Proc. of the 2003 SIAM Intl.Conf. on Data Mining
    • Ertöz, L.1    Steinbach, M.2    Kumar, V.3
  • 4
    • 34548134109 scopus 로고    scopus 로고
    • GRIDBSCAN: GRId Density-Based Spatial Clustering of Applications with Noise
    • Man and Cybernetics, Taipei, Taiwan
    • Ozge Uncu, William A. Gruver, Dilip B. Kotak. GRIDBSCAN: GRId Density-Based Spatial Clustering of Applications with Noise. In IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 2006 , pp. 2976-2981.
    • (2006) IEEE International Conference on Systems , pp. 2976-2981
    • Uncu, O.1    Gruver, W.A.2    Kotak, D.B.3
  • 5
    • 48349091659 scopus 로고    scopus 로고
    • César S. de Oliveira, Paulo Igor Godinho, Aruanda S. G. Meiguins. EDACluster: An Evolutionary Density and Grid-Based Clustering Algorithm. In Seventh International Conference on Intelligent Systems Design and Applications, 2007, pp. 143-148.
    • César S. de Oliveira, Paulo Igor Godinho, Aruanda S. G. Meiguins. EDACluster: An Evolutionary Density and Grid-Based Clustering Algorithm. In Seventh International Conference on Intelligent Systems Design and Applications, 2007, pp. 143-148.
  • 8
    • 22844454592 scopus 로고    scopus 로고
    • XIAOWEI XU , JOCHEN JAGER , HANS-PETER KRIEGEL. A Fast Parallel Clustering Algorithm for Large Spatial Databases. Data Mining and Knowledge Discovery, 3, Issue.3, September 1999, pp.263-290.
    • XIAOWEI XU , JOCHEN JAGER , HANS-PETER KRIEGEL. A Fast Parallel Clustering Algorithm for Large Spatial Databases. Data Mining and Knowledge Discovery, Vol.3, Issue.3, September 1999, pp.263-290.
  • 9
    • 35048899401 scopus 로고    scopus 로고
    • Manoranjan Dash, Simona Petrutiu, Peter Scheuermann. Efficient Parallel Hierarchical Clustering. Springer-Verlag Berlin Heidelberg, Euro-Par 2004, LNCS 3149, 2004, pp.363-371.
    • Manoranjan Dash, Simona Petrutiu, Peter Scheuermann. Efficient Parallel Hierarchical Clustering. Springer-Verlag Berlin Heidelberg, Euro-Par 2004, LNCS 3149, 2004, pp.363-371.
  • 11
    • 70450136679 scopus 로고    scopus 로고
    • Zeng Donghai. The Study of Clustering Algorithm based on Grid-Density and Spatial Partition Tree. XiaMen University, PRC, 2006.
    • Zeng Donghai. The Study of Clustering Algorithm based on Grid-Density and Spatial Partition Tree. XiaMen University, PRC, 2006.
  • 12
    • 0000272920 scopus 로고
    • An algorithm for creating artificial test clusters
    • G. Milligan. An algorithm for creating artificial test clusters. Psychometrika, 50(1), 1985, pp.123-127.
    • (1985) Psychometrika , vol.50 , Issue.1 , pp. 123-127
    • Milligan, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.