메뉴 건너뛰기




Volumn 25, Issue 11, 2009, Pages

Elastic-net regularization: Error estimates and active set methods

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE SET METHODS; ACTIVE SETS; APRIORI; CONVERGENCE PROPERTIES; CONVERGENCE RATES; ERROR ESTIMATES; NUMERICAL ALGORITHMS; NUMERICAL RESULTS; PARAMETER CHOICE; POSTERIORI;

EID: 70450162345     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/25/11/115022     Document Type: Article
Times cited : (75)

References (30)
  • 2
    • 62649147819 scopus 로고    scopus 로고
    • Morozov's discrepancy principle and Tikhonov-type functionals
    • Bonesky T 2009 Morozov's discrepancy principle and Tikhonov-type functionals Inverse Problems 25 015015
    • (2009) Inverse Problems , vol.25 , Issue.1 , pp. 015015
    • Bonesky, T.1
  • 3
    • 41449091142 scopus 로고    scopus 로고
    • Iterated hard shrinkage for minimization problems with sparsity constraints
    • Bredies K and Lorenz D A 2008 Iterated hard shrinkage for minimization problems with sparsity constraints SIAM J. Sci. Comput. 30 657-83
    • (2008) SIAM J. Sci. Comput. , vol.30 , Issue.2 , pp. 657-683
    • Bredies, K.1    Lorenz, D.A.2
  • 4
    • 57349100926 scopus 로고    scopus 로고
    • Linear convergence of iterative soft-thresholding
    • Bredies K and Lorenz D A 2008 Linear convergence of iterative soft-thresholding J. Fourier Anal. Appl. 14 813-37
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 813-837
    • Bredies, K.1    Lorenz, D.A.2
  • 5
    • 6444243748 scopus 로고    scopus 로고
    • Convergence rates of convex variational regularization
    • Burger M and Osher S 2004 Convergence rates of convex variational regularization Inverse Problems 20 1411-20
    • (2004) Inverse Problems , vol.20 , Issue.5 , pp. 1411-1420
    • Burger, M.1    Osher, S.2
  • 6
    • 33947416035 scopus 로고    scopus 로고
    • Near optimal signal recovery from random projections: Universal encoding strategies
    • Candés E J and Tao T C 2006 Near optimal signal recovery from random projections: universal encoding strategies IEEE Trans. Inf. Theory 52 5406-25
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candés, E.J.1    Tao, T.C.2
  • 8
    • 0034432264 scopus 로고    scopus 로고
    • Smoothing methods and semismooth methods for nondifferentiable operator equations
    • Chen X, Nashed Z and Qi L 2000 Smoothing methods and semismooth methods for nondifferentiable operator equations SIAM J. Numer. Anal. 38 1200-16
    • (2000) SIAM J. Numer. Anal. , vol.38 , Issue.4 , pp. 1200-1216
    • Chen, X.1    Nashed, Z.2    Qi, L.3
  • 9
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. in Pure Appl. Math. 57 1413-57
    • (2004) Commun. in Pure Appl. Math. , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 10
    • 62549127689 scopus 로고    scopus 로고
    • Elastic-net regularization in learning theory
    • De Mol C, De Vito E and Rosasco L 2009 Elastic-net regularization in learning theory J. Complexity 25 201-30
    • (2009) J. Complexity , vol.25 , Issue.2 , pp. 201-230
    • De Mol, C.1    De Vito, E.2    Rosasco, L.3
  • 12
    • 0142200827 scopus 로고    scopus 로고
    • An em algorithm for wavelet-based image restoration
    • Figueiredo M A T and Nowak R D 2003 An EM algorithm for wavelet-based image restoration IEEE Trans. Image Process. 12 906-16
    • (2003) IEEE Trans. Image Process. , vol.12 , Issue.8 , pp. 906-916
    • Figueiredo, M.A.T.1    Nowak, R.D.2
  • 13
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Applications to compressed sensing and other inverse problems
    • Figueiredo M A T, Nowak R D and Wright S J 2007 Gradient projection for sparse reconstruction: applications to compressed sensing and other inverse problems IEEE J. Sel. Top. Signal Process. 1 586-97
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 15
    • 44449098059 scopus 로고    scopus 로고
    • A semismooth Newton method for Tikhonov functionals with sparsity constraints
    • Griesse R and Lorenz D A 2008 A semismooth Newton method for Tikhonov functionals with sparsity constraints Inverse Problems 24 035007 (19pp)
    • (2008) Inverse Problems , vol.24 , Issue.3 , pp. 035007
    • Griesse, R.1    Lorenz, D.A.2
  • 16
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization: Methodology and convergence
    • Hale E T, Yin W and Zhang Y 2008 Fixed-point continuation for l1-minimization: methodology and convergence SIAM J. Optim. 19 1107-30
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 17
    • 36448976249 scopus 로고    scopus 로고
    • Regularization tools version 4.0 for Matlab 7.3
    • Hansen P C 2007 Regularization tools version 4.0 for Matlab 7.3 Numer. Algorithms 46 189-94
    • (2007) Numer. Algorithms , vol.46 , Issue.2 , pp. 189-194
    • Hansen, P.C.1
  • 18
    • 0041657515 scopus 로고    scopus 로고
    • The primal-dual active set strategy as a semismooth Newton method
    • Hintermüller M, Ito K and Kunisch K 2003 The primal-dual active set strategy as a semismooth Newton method SIAM J. Optim. 13 865-88
    • (2003) SIAM J. Optim. , vol.13 , Issue.3 , pp. 865-888
    • Hintermüller, M.1    Ito, K.2    Kunisch, K.3
  • 19
    • 0009571252 scopus 로고
    • On the choice of the regularization parameter in nonlinear inverse problems
    • Ito K and Kunisch K 1992 On the choice of the regularization parameter in nonlinear inverse problems SIAM J. Optim. 2 376-404
    • (1992) SIAM J. Optim. , vol.2 , Issue.3 , pp. 376-404
    • Ito, K.1    Kunisch, K.2
  • 22
    • 0019390023 scopus 로고
    • Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution
    • Levy S and Fullager P 1981 Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution Geophysics 46 1235-43
    • (1981) Geophysics , vol.46 , Issue.9 , pp. 1235-1243
    • Levy, S.1    Fullager, P.2
  • 23
    • 51749124719 scopus 로고    scopus 로고
    • Convergence rates and source conditions for Tikhonov regularization with sparsity constraints
    • Lorenz D A 2008 Convergence rates and source conditions for Tikhonov regularization with sparsity constraints J. Inverse Ill-Posed Problems 16 463-78
    • (2008) J. Inverse Ill-Posed Problems , vol.16 , Issue.5 , pp. 463-478
    • Lorenz, D.A.1
  • 24
    • 67650414322 scopus 로고    scopus 로고
    • 1-penalized functionals
    • 1-penalized functionals Inverse Problems 25 035008
    • (2009) Inverse Problems , vol.25 , Issue.3 , pp. 035008
    • Loris, I.1
  • 27
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R 1996 Regression shrinkage and selection via the lasso Journal R. Stat. Soc. B 58 267-88
    • (1996) Journal R. Stat. Soc. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 28
    • 0043244872 scopus 로고    scopus 로고
    • Semismooth Newton methods for operator equations in function spaces
    • Ulbrich S 2002 Semismooth Newton methods for operator equations in function spaces SIAM J. Optim. 13 805-42
    • (2002) SIAM J. Optim. , vol.13 , Issue.3 , pp. 805-842
    • Ulbrich, S.1
  • 30
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H and Hastie T 2005 Regularization and variable selection via the elastic net J. R. Stat. Soc. B 67 301-20
    • (2005) J. R. Stat. Soc. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.