메뉴 건너뛰기




Volumn 2, Issue 2, 2008, Pages 271-290

Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise

Author keywords

Hilbert scales; Inverse boundary value problems; Nonlinear Tikhonov regularization; Parameter identification problems; Statistical inverse problem

Indexed keywords


EID: 70450132564     PISSN: 19308337     EISSN: 19308345     Source Type: Journal    
DOI: 10.3934/ipi.2008.2.271     Document Type: Article
Times cited : (35)

References (32)
  • 1
    • 0003796630 scopus 로고    scopus 로고
    • Pure and Applied Math-ematics,” Elsevier Science, Oxford, 2nd edition
    • R. A. Adams and J. J. Fournier, “Sobolev Spaces,” volume 140 of “Pure and Applied Math-ematics,” Elsevier Science, Oxford, 2nd edition, 2003.
    • (2003) Sobolev Spaces , vol.140
    • Adams, R.A.1    Fournier, J.J.2
  • 2
    • 10844236506 scopus 로고    scopus 로고
    • Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise
    • N. Bissantz, T. Hohage and A. Munk, Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise, Inverse Problems, 20 (2004), 1773–1789.
    • (2004) Inverse Problems , vol.20 , pp. 1773-1789
    • Bissantz, N.1    Hohage, T.2    Munk, A.3
  • 3
    • 85044973702 scopus 로고    scopus 로고
    • Convergence rates of general regularization methods for statistical inverse problems and applications
    • at press
    • N. Bissantz, T. Hohage, A. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., at press.
    • SIAM J. Numer. Anal
    • Bissantz, N.1    Hohage, T.2    Munk, A.3    Ruymgaart, F.4
  • 4
    • 0030335402 scopus 로고    scopus 로고
    • Asymptotic equivalence of nonparametric regression and white noise
    • D. L. Brown and M. G. Low, Asymptotic equivalence of nonparametric regression and white noise, Ann. Statist., 24 (1996), 2384–2398.
    • (1996) Ann. Statist. , vol.24 , pp. 2384-2398
    • Brown, D.L.1    Low, M.G.2
  • 5
    • 84942964039 scopus 로고
    • Stability for parameter estimation in two-point boundary value problems
    • F. Colonius and K. Kunisch, Stability for parameter estimation in two-point boundary value problems, J. Reine Angew. Math., 370 (1986), 1–29.
    • (1986) J. Reine Angew. Math. , vol.370 , pp. 1-29
    • Colonius, F.1    Kunisch, K.2
  • 6
    • 0011282591 scopus 로고
    • Output least squares stability in elliptic systems
    • F. Colonius and K. Kunisch, Output least squares stability in elliptic systems, Appl. Math. Optim., 19 (1989), 33–63.
    • (1989) Appl. Math. Optim. , vol.19 , pp. 33-63
    • Colonius, F.1    Kunisch, K.2
  • 7
    • 26644456996 scopus 로고    scopus 로고
    • Preconditioning Landweber iteration in Hilbert scales
    • H. Egger and A. Neubauer, Preconditioning Landweber iteration in Hilbert scales, Numer. Math., 101 (2005), 643–662.
    • (2005) Numer. Math. , vol.101 , pp. 643-662
    • Egger, H.1    Neubauer, A.2
  • 9
    • 36149030945 scopus 로고
    • Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems
    • H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems, 5 (1989), 523–540.
    • (1989) Inverse Problems , vol.5 , pp. 523-540
    • Engl, H.W.1    Kunisch, K.2    Neubauer, A.3
  • 11
    • 33747349217 scopus 로고    scopus 로고
    • On adaptive inverse estimation of linear functionals in Hilbert scales
    • A. Goldenshluger and S. V. Pereverzev, On adaptive inverse estimation of linear functionals in Hilbert scales, Bernoulli, 9 (2003), 783–807.
    • (2003) Bernoulli , vol.9 , pp. 783-807
    • Goldenshluger, A.1    Pereverzev, S.V.2
  • 12
    • 0041457245 scopus 로고    scopus 로고
    • Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales
    • Q.-n. Jin, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales, Inverse Problems, 16 (2000), 187–197.
    • (2000) Inverse Problems , vol.16 , pp. 187-197
    • Jin, Q.-N.1
  • 14
    • 38249027215 scopus 로고
    • Inherent identifiability of parameters in elliptic differential equations
    • K. Kunisch, Inherent identifiability of parameters in elliptic differential equations, J. Math. Anal. Appl., 132 (1988), 453–472.
    • (1988) J. Math. Anal. Appl. , vol.132 , pp. 453-472
    • Kunisch, K.1
  • 16
    • 0030269038 scopus 로고    scopus 로고
    • Statistical inverse estimation in Hilbert scales
    • B. A. Mair and F. H. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math., 56 (1996), 1424–1444.
    • (1996) SIAM J. Appl. Math. , vol.56 , pp. 1424-1444
    • Mair, B.A.1    Ruymgaart, F.H.2
  • 17
    • 0034580744 scopus 로고    scopus 로고
    • Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projection methods
    • P. Mathé and S. Pereverzev, Optimal discretization of inverse problems in Hilbert scales. regularization and self-regularization of projection methods, SIAM J. Numer. Anal., 38 (2001), 1999–2021.
    • (2001) SIAM J. Numer. Anal. , vol.38 , pp. 1999-2021
    • Mathé, P.1    Pereverzev, S.2
  • 18
    • 84951418001 scopus 로고
    • Error bounds for Tikhonov regularization in Hilbert scales
    • F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable Anal., 18 (1984), 29–37.
    • (1984) Applicable Anal , vol.18 , pp. 29-37
    • Natterer, F.1
  • 19
    • 84966213836 scopus 로고
    • When do Sobolev spaces form a Hilbert scale?
    • A. Neubauer, When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc., 103 (1988), 557–562.
    • (1988) Proc. Amer. Math. Soc. , vol.103 , pp. 557-562
    • Neubauer, A.1
  • 20
    • 84948247213 scopus 로고
    • Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales
    • A. Neubauer, Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Appl. Anal., 46 (1992), 59–72.
    • (1992) Appl. Anal. , vol.46 , pp. 59-72
    • Neubauer, A.1
  • 21
    • 0034381932 scopus 로고    scopus 로고
    • On Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    • A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309–328.
    • (2000) Numer. Math. , vol.85 , pp. 309-328
    • Neubauer, A.1
  • 23
    • 0040235973 scopus 로고
    • Convergence characteristics of methods of regularization estimators for nonlinear operator equations
    • F. O’Sullivan, Convergence characteristics of methods of regularization estimators for nonlinear operator equations, SIAM J. Numer. Anal., 27 (1990), 1635–1649.
    • (1990) SIAM J. Numer. Anal. , vol.27 , pp. 1635-1649
    • O’Sullivan, F.1
  • 24
    • 0000056063 scopus 로고
    • Optimal filtration of square-integrable signals in Gaussian white noise
    • M. S. Pinsker, Optimal filtration of square-integrable signals in Gaussian white noise, Probl. Inf. Transm., 16 (1980), 52–68.
    • (1980) Probl. Inf. Transm. , vol.16 , pp. 52-68
    • Pinsker, M.S.1
  • 27
    • 0027802743 scopus 로고
    • Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems
    • O. Scherzer, H. W. Engl and K. Kunisch, Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal., 30 (1993), 1796–1838.
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 1796-1838
    • Scherzer, O.1    Engl, H.W.2    Kunisch, K.3
  • 28
    • 0001679731 scopus 로고    scopus 로고
    • On a general regularization scheme for nonlinear ill-posed problems. II, Regularization in Hilbert scales
    • U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed problems. II, Regularization in Hilbert scales, Inverse Problems, 14 (1998), 1607–1616.
    • (1998) Inverse Problems , vol.14 , pp. 1607-1616
    • Tautenhahn, U.1
  • 29
    • 85044974859 scopus 로고    scopus 로고
    • Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems
    • U. Tautenhahn and Q. nian Jin, Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems, Inverse Problems, 19 (2003), 1–21.
    • (2003) Inverse Problems , vol.19 , pp. 1-21
    • Tautenhahn, U.1    Nian Jin, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.