-
2
-
-
33750003129
-
-
10.1126/science.1131871
-
L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Science 314, 281 (2006). 10.1126/science.1131871
-
(2006)
Science
, vol.314
, pp. 281
-
-
Childress, L.1
Dutt, M.V.G.2
Taylor, J.M.3
Zibrov, A.S.4
Jelezko, F.5
Wrachtrup, J.6
Hemmer, P.R.7
Lukin, M.D.8
-
3
-
-
34249915076
-
-
10.1126/science.1139831
-
M. V. G. Dutt, L. Childress, J. Liang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. Hemmer, and M. Lukin, Science 316, 1312 (2007). 10.1126/science.1139831
-
(2007)
Science
, vol.316
, pp. 1312
-
-
Dutt, M.V.G.1
Childress, L.2
Liang, J.3
Togan, E.4
Maze, J.5
Jelezko, F.6
Zibrov, A.S.7
Hemmer, P.8
Lukin, M.9
-
4
-
-
84929745545
-
-
Cambridge University Press, London
-
F. H. L. Essler, H. Frahm, F. Gohmann, A. Klumper, and V. E. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, London, 2005).
-
(2005)
The One-Dimensional Hubbard Model
-
-
Essler, F.H.L.1
Frahm, H.2
Gohmann, F.3
Klumper, A.4
Korepin, V.E.5
-
6
-
-
0348107274
-
-
10.1103/PhysRevLett.91.207901
-
S. Bose, Phys. Rev. Lett. 91, 207901 (2003). 10.1103/PhysRevLett.91. 207901
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 207901
-
-
Bose, S.1
-
7
-
-
34547416594
-
-
10.1080/00107510701342313
-
S. Bose, Contemp. Phys. 48, 13 (2007). 10.1080/00107510701342313
-
(2007)
Contemp. Phys.
, vol.48
, pp. 13
-
-
Bose, S.1
-
9
-
-
33644667299
-
-
10.1103/PhysRevA.73.032306
-
A. Kay, Phys. Rev. A 73, 032306 (2006). 10.1103/PhysRevA.73.032306
-
(2006)
Phys. Rev. A
, vol.73
, pp. 032306
-
-
Kay, A.1
-
11
-
-
50049126146
-
-
10.1103/PhysRevA.78.022325
-
G. Gualdi, V. Kostak, I. Marzoli, and P. Tombesi, Phys. Rev. A 78, 022325 (2008). 10.1103/PhysRevA.78.022325
-
(2008)
Phys. Rev. A
, vol.78
, pp. 022325
-
-
Gualdi, G.1
Kostak, V.2
Marzoli, I.3
Tombesi, P.4
-
13
-
-
68549128723
-
-
10.1103/PhysRevA.80.012316
-
J. Zhang, M. Ditty, D. Burgarth, C. A. Ryan, C. M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, and R. Laflamme, Phys. Rev. A 80, 012316 (2009). 10.1103/PhysRevA.80.012316
-
(2009)
Phys. Rev. A
, vol.80
, pp. 012316
-
-
Zhang, J.1
Ditty, M.2
Burgarth, D.3
Ryan, C.A.4
Chandrashekar, C.M.5
Laforest, M.6
Moussa, O.7
Baugh, J.8
Laflamme, R.9
-
14
-
-
0029838223
-
-
10.1126/science.273.5278.1073
-
S. Lloyd, Science 273, 1073 (1996). 10.1126/science.273.5278.1073
-
(1996)
Science
, vol.273
, pp. 1073
-
-
Lloyd, S.1
-
18
-
-
63649159186
-
-
10.1103/PhysRevA.79.032324
-
E. Rufeil-Fiori, C. M. Sanchez, F. Y. Oliva, H. M. Pastawski, and P. R. Levstein, Phys. Rev. A 79, 032324 (2009). 10.1103/PhysRevA.79.032324
-
(2009)
Phys. Rev. A
, vol.79
, pp. 032324
-
-
Rufeil-Fiori, E.1
Sanchez, C.M.2
Oliva, F.Y.3
Pastawski, H.M.4
Levstein, P.R.5
-
20
-
-
0009901571
-
-
10.1103/PhysRevB.12.4597
-
A. Sur and I. J. Lowe, Phys. Rev. B 12, 4597 (1975). 10.1103/PhysRevB.12. 4597
-
(1975)
Phys. Rev. B
, vol.12
, pp. 4597
-
-
Sur, A.1
Lowe, I.J.2
-
31
-
-
34548223194
-
-
10.1126/science.1143831
-
G. Xu, C. Broholm, Y.-A. Soh, G. Aeppli, J. F. DiTusa, Y. Chen, M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, and H. Takagi, Science 317, 1049 (2007). 10.1126/science.1143831
-
(2007)
Science
, vol.317
, pp. 1049
-
-
Xu, G.1
Broholm, C.2
Soh, Y.-A.3
Aeppli, G.4
Ditusa, J.F.5
Chen, Y.6
Kenzelmann, M.7
Frost, C.D.8
Ito, T.9
Oka, K.10
Takagi, H.11
-
34
-
-
0000825436
-
-
10.1103/PhysRevLett.36.110
-
A. Pines, D. J. Ruben, S. Vega, and M. Mehring, Phys. Rev. Lett. 36, 110 (1976). 10.1103/PhysRevLett.36.110
-
(1976)
Phys. Rev. Lett.
, vol.36
, pp. 110
-
-
Pines, A.1
Ruben, D.J.2
Vega, S.3
Mehring, M.4
-
38
-
-
0000536106
-
-
10.1063/1.449344
-
J. Baum, M. Munowitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985). 10.1063/1.449344
-
(1985)
J. Chem. Phys.
, vol.83
, pp. 2015
-
-
Baum, J.1
Munowitz, M.2
Garroway, A.N.3
Pines, A.4
-
42
-
-
0037450553
-
-
10.1016/S0009-2614(02)02020-1
-
C. Ramanathan, H. Cho, P. Cappellaro, G. S. Boutis, and D. G. Cory, Chem. Phys. Lett. 369, 311 (2003). 10.1016/S0009-2614(02)02020-1
-
(2003)
Chem. Phys. Lett.
, vol.369
, pp. 311
-
-
Ramanathan, C.1
Cho, H.2
Cappellaro, P.3
Boutis, G.S.4
Cory, D.G.5
-
43
-
-
33644951557
-
-
10.1103/PhysRevB.72.054427
-
H. J. Cho, T. D. Ladd, J. Baugh, D. G. Cory, and C. Ramanathan, Phys. Rev. B 72, 054427 (2005). 10.1103/PhysRevB.72.054427
-
(2005)
Phys. Rev. B
, vol.72
, pp. 054427
-
-
Cho, H.J.1
Ladd, T.D.2
Baugh, J.3
Cory, D.G.4
Ramanathan, C.5
-
44
-
-
33846286064
-
-
10.1103/PhysRevB.74.224434
-
H. J. Cho, P. Cappellaro, D. G. Cory, and C. Ramanathan, Phys. Rev. B 74, 224434 (2006). 10.1103/PhysRevB.74.224434
-
(2006)
Phys. Rev. B
, vol.74
, pp. 224434
-
-
Cho, H.J.1
Cappellaro, P.2
Cory, D.G.3
Ramanathan, C.4
-
46
-
-
70449846764
-
-
The relevant 16-pulse sequence S may be understood starting from a simpler two-pulse cycle C which also simulates the DQ Hamiltonian along with its time-reversed version C̄. The primitive pulse cycle C= [Δ 2 X Δ′ X Δ 2], where Δ′ =2Δ+w, Δ, w being the pulse delay and the pulse width, respectively. Then S=C□ C̄ □ C̄ □C□ C̄ □C□C□ C̄, with a cycle time Tc =8×3 (Δ+w) and H̄ (0) = HDQ.
-
The relevant 16-pulse sequence S may be understood starting from a simpler two-pulse cycle C which also simulates the DQ Hamiltonian along with its time-reversed version C̄. The primitive pulse cycle C= [Δ 2 X Δ′ X Δ 2], where Δ′ =2Δ+w, Δ, w being the pulse delay and the pulse width, respectively. Then S=C□ C̄ □ C̄ □C□ C̄ □C□C□ C̄, with a cycle time Tc =8×3 (Δ+w) and H̄ (0) = HDQ.
-
-
-
-
48
-
-
19544364667
-
-
10.1103/PhysRevLett.93.090501
-
H. G. Krojanski and D. Suter, Phys. Rev. Lett. 93, 090501 (2004). 10.1103/PhysRevLett.93.090501
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 090501
-
-
Krojanski, H.G.1
Suter, D.2
-
49
-
-
0000948277
-
-
10.1016/S0009-2614(01)00472-9
-
S. I. Doronin, E. B. Feldman, I. Ya. Guinzbourg, and I. I. Maximov, Chem. Phys. Lett. 341, 144 (2001). 10.1016/S0009-2614(01)00472-9
-
(2001)
Chem. Phys. Lett.
, vol.341
, pp. 144
-
-
Doronin, S.I.1
Feldman, E.B.2
Ya. Guinzbourg, I.3
Maximov, I.I.4
-
50
-
-
0004086340
-
-
edited by Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, and I.-O. Stamatescu (Springer, New York
-
Decoherence: Theoretical, Experimental and Conceptual Problems, edited by, Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, and, I.-O. Stamatescu, (Springer, New York, 2000).
-
(2000)
Decoherence: Theoretical, Experimental and Conceptual Problems
-
-
-
52
-
-
33750926031
-
-
10.1103/RevModPhys.59.1
-
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987). 10.1103/RevModPhys.59.1
-
(1987)
Rev. Mod. Phys.
, vol.59
, pp. 1
-
-
Leggett, A.J.1
Chakravarty, S.2
Dorsey, A.T.3
Fisher, M.P.A.4
Garg, A.5
Zwerger, W.6
-
54
-
-
70449972942
-
-
As it turns out, the peak at the mirror time is no longer the second largest for the thermal state in the presence of cross-chain coupling, whereas it is still such for the end-polarized state.
-
As it turns out, the peak at the mirror time is no longer the second largest for the thermal state in the presence of cross-chain coupling, whereas it is still such for the end-polarized state.
-
-
-
-
55
-
-
70449854652
-
-
It is worth noting that in some situations, the freedom of choice for the bath model can be formalized precisely: for instance, in the case of bosonic degrees of freedom, all baths possessing the same temperature and spectral density have, independently of any other detail, an equivalent effect on the central system (see, e.g.,). In the case of spin baths, as far as we know, such a degree of rigor has not yet been achieved.
-
It is worth noting that in some situations, the freedom of choice for the bath model can be formalized precisely: for instance, in the case of bosonic degrees of freedom, all baths possessing the same temperature and spectral density have, independently of any other detail, an equivalent effect on the central system (see, e.g.,). In the case of spin baths, as far as we know, such a degree of rigor has not yet been achieved.
-
-
-
-
56
-
-
70450003390
-
-
A complete simulation for a fixed realization takes about 1 week on a 64-node cluster.
-
A complete simulation for a fixed realization takes about 1 week on a 64-node cluster.
-
-
-
-
57
-
-
33947573103
-
-
10.1088/0953-8984/19/8/083202
-
W. Zhang, N. P. Konstantinidis, K. A. Al-Hassanieh, and V. V. Dobrovitski, J. Phys.: Condens. Matter 19, 083202 (2007). 10.1088/0953-8984/19/ 8/083202
-
(2007)
J. Phys.: Condens. Matter
, vol.19
, pp. 083202
-
-
Zhang, W.1
Konstantinidis, N.P.2
Al-Hassanieh, K.A.3
Dobrovitski, V.V.4
-
58
-
-
41549135633
-
-
10.1103/PhysRevB.77.125336
-
W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, L. F. Santos, and L. Viola, Phys. Rev. B 77, 125336 (2008). 10.1103/PhysRevB.77.125336
-
(2008)
Phys. Rev. B
, vol.77
, pp. 125336
-
-
Zhang, W.1
Konstantinidis, N.P.2
Dobrovitski, V.V.3
Harmon, B.N.4
Santos, L.F.5
Viola, L.6
-
62
-
-
27244449287
-
-
10.1103/PhysRevE.72.026225
-
J. Lages, V. V. Dobrovitski, M. I. Katsnelson, H. A. De Raedt, and B. N. Harmon, Phys. Rev. E 72, 026225 (2005). 10.1103/PhysRevE.72.026225
-
(2005)
Phys. Rev. e
, vol.72
, pp. 026225
-
-
Lages, J.1
Dobrovitski, V.V.2
Katsnelson, M.I.3
De Raedt, H.A.4
Harmon, B.N.5
|